Detection and characterization of aeolian sand strips on the beach using permanent laser scanning

Authors

  • Christa O. van IJzendoorn Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, USA
  • Kay Boomaars Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands; DEME Environmental NL, Amsterdam, the Netherlands
  • Sander E. Vos Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
  • Ad J.H.M. Reniers Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
  • Mieke Kuschnerus Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
  • Roderik Lindenbergh Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands

DOI:

https://doi.org/10.59236/geomorphica.v1i1.32

Keywords:

aeolian sediment transport, bedforms, terrestrial laser scanning, coastal processes, Fourier transform

Abstract

Aeolian sand strips are bedforms that often form on the beach during high wind events. The sand strips can move across the beach resulting in sediment transport, but these sediment fluxes have not yet been quantified. Permanent laser scanning (PLS) provides an opportunity to gather long-term and detailed information about sand strips. Here, we present a method that detects sand strips in PLS reflectance images and extracts their wavelength, orientation, and height. The detection method is used on a month-long hourly dataset of Noordwijk beach, the Netherlands. The average sand strip wavelength (13 m), height (3 cm), and orientation (onshore-oblique) found in this dataset are consistent with previous research. Migration rates are obtained by examining successive images of sand strip patterns. Using the concurrent sand strip height, the sediment transport rate associated with sand strips is estimated. During a single 8-hour event, a total sediment flux of 0.16 m3/m is observed of which 0.07 m3/m in onshore direction.  Furthermore, the detection method is shown to be applicable to other beaches by calibrating its thresholds. This opens a new possibility for future research to use PLS to investigate the behavior and sediment transport rates of aeolian sand strips.

References

Aagaard, T., Greenwood, B., & Nielsen, J. (2001). Bed Level Changes and Megaripple Migration on a Barred Beach. Journal of Coastal Research, 34, 110–116. https://www.jstor.org/stable/25736279

Anders, K., Winiwarter, L., Mara, H., Lindenbergh, R., Vos, S. E., & Höfle, B. (2021). Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 297–308. https://doi.org/10.1016/J.ISPRSJPRS.2021.01.015

Baddock, M. C., Nield, J. M., & Wiggs, G. F. S. (2018). Early-stage aeolian protodunes: Bedform development and sand transport dynamics. Earth Surface Processes and Landforms, 43(1), 339–346. https://doi.org/10.1002/ESP.4242

Barbero-García, I., Kuschnerus, M., Vos, S., & Lindenbergh, R. (2023). Automatic detection of bulldozer-induced changes on a sandy beach from video using YOLO algorithm. International Journal of Applied Earth Observation and Geoinformation, 117. https://doi.org/10.1016/j.jag.2023.103185

Bauer, Bernard O., & Davidson-Arnott, R. G. D. (2003). A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects. Geomorphology, 49(1), 89–108. https://doi.org/10.1016/S0169-555X(02)00165-4

Bauer, Bernard O., Davidson-Arnott, R. G. D., Walker, I. J., Hesp, P. A., & Ollerhead, J. (2012). Wind direction and complex sediment transport response across a beach–dune system. Earth Surface Processes and Landforms, 37(15), 1661–1677. https://doi.org/10.1002/ESP.3306

Bauer, B.O., Davidson-Arnott, R. G. D., Hesp, P. A., Namikas, S. L., Ollerhead, J., & Walker, I. J. (2009). Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology. https://doi.org/10.1016/j.geomorph.2008.02.016

Biase, V. D., Hanssen, R. F., & Vos, S. E. (2021). Sensitivity of Near-Infrared Permanent Laser Scanning Intensity for Retrieving Soil Moisture on a Coastal Beach: Calibration Procedure Using In Situ Data. Remote Sensing, 13. https://doi.org/10.3390/rs13091645

Brand, E., Sloover, L. D., Wulf, A. D., Montreuil, A. L., Vos, S., & Chen, M. (2019). Cross-Shore Suspended Sediment Transport in Relation to Topographic Changes in the Intertidal Zone of a Macro-Tidal Beach (Mariakerke, Belgium). Journal of Marine Science and Engineering 2019, Vol. 7, Page 172, 7(6), 172. https://doi.org/10.3390/JMSE7060172

Bristow, N. R., Best, J., Wiggs, G. F. S., Nield, J. M., Baddock, M. C., Delorme, P., & Christensen, K. T. (2022). Topographic perturbation of turbulent boundary layers by low-angle, early-stage aeolian dunes. Earth Surface Processes and Landforms, 47(6), 1439–1454. https://doi.org/10.1002/ESP.5326

Brodie, K. L., & Spore, N. J. (2015). Foredune classification and storm response: Automated analysis of terrestrial lidar DEMs. The Proceedings of the Coastal Sediments 2015.

Chepil, W. S. (1956). Influence of Moisture on Erodibility of Soil by Wind. Soil Science Society of America Journal, 20(2), 288–292. https://doi.org/10.2136/SSSAJ1956.03615995002000020033X

Cohn, N., Brodie, K. L., Johnson, B., & Palmsten, M. L. (2021). Hotspot dune erosion on an intermediate beach. Coastal Engineering, 170. https://doi.org/10.1016/j.coastaleng.2021.103998

Cohn, N., Dickhudt, P., & Brodie, K. (2022). Remote Observations of Aeolian Saltation. Geophysical Research Letters, 49(16), e2022GL100066. https://doi.org/10.1029/2022GL100066

da Silva, G. M., Mousavi, S. M. S., & Jose, F. (2012). Wave-driven sediment transport and beach-dune dynamics in a headland bay beach. Marine Geology, 323–325, 29–46. https://doi.org/10.1016/j.margeo.2012.07.015

Davidson-Arnott, R. G. D., Yang, Y., Ollerhead, J., Hesp, P. A., & Walker, I. J. (2008). The effects of surface moisture on aeolian sediment transport threshold and mass flux on a beach. Earth Surf. Process. Landforms, 33, 55–74. https://doi.org/10.1002/esp

de Vries, S., Verheijen, A., Hoonhout, B., Vos, S., Cohn, N., & Ruggiero, P. (2017). Measured Spatial Variability of Beach Erosion due to Aeolian Processess. Coastal Dynamics 2017, Paper No. 071, 481–491.

de Winter, W., Donker, J., Sterk, G., van Beem, J., & Ruessink, G. (2020). Regional versus local wind speed and direction at a narrow beach with a high and steep foredune. PLoS ONE, 15(1). https://doi.org/10.1371/JOURNAL.PONE.0226983

Delorme, P., Nield, J. M., Wiggs, G. F. S., Baddock, M. C., Bristow, N. R., Best, J. L., Christensen, K. T., & Claudin, P. (2023). Field Evidence for the Initiation of Isolated Aeolian Sand Patches. Geophysical Research Letters, 50(4). https://doi.org/10.1029/2022GL101553

Dijk, T. A. G. P. V., & Lindenbergh, R. C. (2017). Methods for Analysing Bedform Geometry and Dynamics. Atlas of Bedforms in the Western Mediterranean, 7–13. https://link.springer.com/chapter/10.1007/978-3-319-33940-5_2

Dijk, T. A. G. P. V., Lindenbergh, R. C., & Egberts, P. J. P. (2008). Separating bathymetric data representing multiscale rhythmic bed forms: A geostatistical and spectral method compared. J. Geophys. Res, 113, 4017. https://doi.org/10.1029/2007JF000950

Field, J. P., & Pelletier, J. D. (2018). Controls on the aerodynamic roughness length and the grain-size dependence of aeolian sediment transport. Earth Surface Processes and Landforms, 43(12), 2616–2626. https://doi.org/10.1002/ESP.4420

Hage, P. M., Ruessink, B. G., & Donker, J. J. A. (2018a). Using Argus Video Monitoring to Determine Limiting Factors of Aeolian Sand Transport on a Narrow Beach. Journal of Marine Science and Engineering, 6(4), 138. https://doi.org/10.3390/jmse6040138

Hage, P. M., Ruessink, B. G., & Donker, J. J. A. (2018b). Determining sand strip characteristics using Argus video monitoring. Aeolian Research, 33, 1–11. https://doi.org/10.1016/j.aeolia.2018.03.007

Hallin, C., Almström, B., Larson, M., & Hanson, H. (2019). Longshore Transport Variability of Beach Face Grain Size: Implications for Dune Evolution. Journal of Coastal Research, 35(4), 751–764. https://doi.org/10.2112/JCOASTRES-D-18-00153.1

Hallin, C., Huisman, B. J. A., Larson, M., Walstra, D. J. R., & Hanson, H. (2019). Impact of sediment supply on decadal-scale dune evolution — Analysis and modelling of the Kennemer dunes in the Netherlands. Geomorphology, 337, 94–110. https://doi.org/10.1016/j.geomorph.2019.04.003

Hallin, C., IJzendoorn, C. V., Homberger, J.-M., & Vries, S. D. (2023). Simulating surface soil moisture on sandy beaches. Coastal Engineering, 185. https://doi.org/10.1016/j.coastaleng.2023.104376

Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6–7), 477–491. https://doi.org/10.1016/J.COASTALENG.2007.01.003

Holthuijsen, L. H. (2007). Waves in oceanic and coastal waters. Cambridge University Press.

Jerolmack, D. J., Mohrig, D., Grotzinger, J. P., Fike, D. A., & Watters, W. A. (2006). Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum, Mars. Journal of Geophysical Research: Planets, 111(12). https://doi.org/10.1029/2005JE002544

Jin, J., Verbeurgt, J., Sloover, L. D., Stal, C., Montreuil, A.-L., Vos, S., Maeyer, P. D., & Wulf, A. D. (2021). Monitoring spatiotemporal variation in beach surface moisture using a long-range terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 195–208. https://doi.org/10.1016/j.isprsjprs.2021.01.011

Jones, K. R., & Traykovski, P. (2019). Interaction of Superimposed Megaripples and Dunes in a Tidally Energetic Environment. Journal of Coastal Research, 35(5), 948–958. https://doi.org/10.2112/JCOASTRES-D-18-00084.1

Kirmse, A., & Ferranti, J. D. (2017). Calculating the prominence and isolation of every mountain in the world. Progress in Physical Geography, 41(6), 788–802. https://doi.org/10.1177/0309133317738163

Kocurek, G, Townsley, M., Yeh, E., Havholm, K., & Sweet, M. L. (1992). Dune and dune-field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. Journal of Sedimentary Petrology, 62(4), 622–635. https://doi.org/10.1306/D4267974-2B26-11D7-8648000102C1865D

Kocurek, Gary, Ewing, R. C., & Mohrig, D. (2010). How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions. Earth Surface Processes and Landforms, 35(1), 51–63. https://doi.org/10.1002/ESP.1913

Kuschnerus, M., Schröder, D., & Lindenbergh, R. (2021). Environmental influences on the stability of a permanently installed laser scanner. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B2-2021), 745–752. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021

Kuschnerus, Mieke, Lindenbergh, R., & Vos, S. (2021). Coastal change patterns from time series clustering of permanent laser scan data. Earth Surface Dynamics, 9(1), 89–103. https://doi.org/10.5194/esurf-9-89-2021

Kuschnerus, Mieke, Lindenbergh, R., Vos, S., & Hanssen, R. (2024). Statistically assessing vertical change on a sandy beach from permanent laser scanning time series. ISPRS Open Journal of Photogrammetry and Remote Sensing, 11, 2667–3932. https://doi.org/10.1016/j.ophoto.2023.100055

Lee, J., Musa, M., & Guala, M. (2021). Scale-Dependent Bedform Migration and Deformation in the Physical and Spectral Domains. Journal of Geophysical Research: Earth Surface, 126(5), e2020JF005811. https://doi.org/10.1029/2020JF005811

Lefebvre, A., Ernstsen, V. B., & Winter, C. (2011). Bedform characterization through 2D spectral analysis. Journal of Coastal Research, 64, 781–785. https://about.jstor.org/terms

Nield, J. M. (2011). Surface moisture−induced feedback in aeolian environments. Geology, 39(10), 915–918. https://doi.org/10.1130/G32151.1

Nield, J. M., King, J., & Jacobs, B. (2014). Detecting surface moisture in aeolian environments using terrestrial laser scanning. Aeolian Research, 12, 9–17. https://doi.org/10.1016/j.aeolia.2013.10.006

Nield, J. M., & Wiggs, G. F. S. (2011). The application of terrestrial laser scanning to aeolian saltation cloud measurement and its response to changing surface moisture. Earth Surface Processes and Landforms, 36(2), 273–278. https://doi.org/10.1002/ESP.2102

Nield, J. M., Wiggs, G. F. S., & Squirrell, R. S. (2011). Aeolian sand strip mobility and protodune development on a drying beach: Examining surface moisture and surface roughness patterns measured by terrestrial laser scanning. Earth Surface Processes and Landforms, 36(4), 513–522. https://doi.org/10.1002/esp.2071

Nordstrom, K. F., & McCluskey, J. M. (1984). Considerations for control of house construction in coastal dunes. Coastal Management, 12(4), 385–402. https://doi.org/10.1080/08920758409361972

O’Dea, A., Brodie, K. L., & Hartzell, P. (2019). Continuous coastal monitoring with an automated terrestrial lidar scanner. Journal of Marine Science and Engineering, 7(2). https://doi.org/10.3390/jmse7020037

Pfennigbauer, M., & Ullrich, A. (2010). Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement. Laser Radar Technology and Applications XV, 7684. https://doi.org/10.1117/12.849641

Poppema, D. W., Wijnberg, K. M., Mulder, J. P. M., Vos, S. E., & Hulscher, S. J. M. H. (2021). The effect of building geometry on the size of aeolian deposition patterns: Scale model experiments at the beach. Coastal Engineering, 168, 103866. https://doi.org/10.1016/J.COASTALENG.2021.103866

Quartel, S., Ruessink, B. G., & Kroon, A. (2007). Daily to seasonal cross-shore behaviour of quasi-persistent intertidal beach morphology. Earth Surface Processes and Landforms, 32(9), 1293–1307. https://doi.org/10.1002/ESP.1477

Sherman, D. J., Zhang, P., Martin, R. L., Ellis, J. T., Kok, J. F., Farrell, E. J., & Li, B. (2019). Aeolian Ripple Migration and Associated Creep Transport Rates. Geosciences. https://doi.org/10.3390/geosciences9090389

Smit, Y., Ruessink, G., Brakenhoff, L. B., & Donker, J. J. A. (2018). Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner. Aeolian Research, 31, 19–27. https://doi.org/10.1016/j.aeolia.2017.07.004

Smith, A. B., Jackson, D. W. T., Cooper, J. A. G., & Hernández-Calvento, L. (2017). Quantifying the role of urbanization on airflow perturbations and dunefield evolution. Earth’s Future, 5(5), 520–539. https://doi.org/10.1002/2016EF000524

Soderstrom, T., & Stewart, G. W. (1974). On the Numerical Properties of an Iterative Method for Computing the Moore-Penrose Generalized Inverse*. SIAM Journal on Numerical Analysis, 11(1). https://doi.org/10.1137/0711008

Soudarissanane, S., Lindenbergh, R., Menenti, M., & Teunissen, P. (2011). Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 389–399. https://doi.org/10.1016/j.isprsjprs.2011.01.005

Uphues, C. F. K., van IJzendoorn, C. O., Hallin, C., Pearson, S. G., van Prooijen, B. C., da Silva, G. M., & de Vries, S. (2022). Coastal aeolian sediment transport in an Active Bed Surface Layer: tracer study and conceptual model. Earth Surface Processes and Landforms. https://doi.org/10.1002/ESP.5449

van IJzendoorn, C., Boomaars, K., Vos, S., Reniers, A., Kuschnerus, M., & Lindenberg, R. (2024). Detection of aeolian sand strips and their characteristics on the beach using laser scanning: Software and dataset. Zenodo. https://doi.org/10.5281/zenodo.10574283

van IJzendoorn, C. O., Hallin, C., Cohn, N., Reniers, A. J. H. M., & de Vries, S. (2022). Novel sediment sampling method provides new insights into vertical grain size variability due to marine and aeolian beach processes. Earth Surface Processes and Landforms. https://doi.org/10.1002/ESP.5518

van IJzendoorn, C. O., Hallin, C., Reniers, A. J. H. M., & de Vries, S. (2023). Modeling Multi-Fraction Coastal Aeolian Sediment Transport With Horizontal and Vertical Grain-Size Variability. Journal of Geophysical Research: Earth Surface, 128(7), e2023JF007155. https://doi.org/10.1029/2023JF007155

van Rijn, L. C., & Strypsteen, G. (2020). A fully predictive model for aeolian sand transport. Coastal Engineering, 156, 103600. https://doi.org/10.1016/J.COASTALENG.2019.103600

Vos, S., Anders, K., Kuschnerus, M., Lindenbergh, R., Höfle, B., Aarninkhof, S., & Vries, & S. D. (2022). A high-resolution 4D terrestrial laser scan dataset of the Kijkduin beach-dune system, The Netherlands. Scientific Data, 9(1), 191. https://doi.org/10.1038/s41597-022-01291-9

Vos, S., Anders, K., Wulf, A. D., Vries, S. D., & Lindenbergh, R. (2022). Spatio-temporal variation of aeolian shoreward sand transport measured using near-continuous laser scanning. Coastal Engineering Proceedings.

Vos, S., Kuschnerus, M., Lindenbergh, R., & de Vries, S. (2023). 4D spatio-temporal laser scan dataset of the beach-dune system in Noordwijk, NL (Version 2). 4TU.ResearchData. https://doi.org/10.4121/1aac46fb-7900-4d4c-a099-d2ce354811d2.v2

Vos, S., Lindenbergh, R. C., Vries, S. D., & Lindenbergh, R. (2017). Coastscan: Continuous monitoring of coastal change using terrestrial laser scanning. Coastal Dynamics 2017.

Vos, S., Spaans, L., Reniers, A., Holman, R., Mccall, R., & Vries, S. D. (2020). Marine Science and Engineering Cross-Shore Intertidal Bar Behavior along the Dutch Coast: Laser Measurements and Conceptual Model. Journal of Marine Science and Engineering, 8(11), 864. https://doi.org/10.3390/jmse8110864

Vos, S., van IJzendoorn, C., Lindenbergh, R., & de Wulf, A. (2024). Non-uniform dune development in the presence of standalone beach buildings. Geomorphology, 466, 109402. https://doi.org/10.1016/j.geomorph.2024.109402

Walker, I. J., Hesp, P. A., Davidson-Arnott, R. G. D., & Ollerhead, J. (2006). Topographic steering of alongshore airflow over a vegetated foredune: Greenwich Dunes, Prince Edward Island, Canada. Journal of Coastal Research, 22(5), 1278–1291. https://doi.org/10.2112/06A-0010.1

Walstra, D. J. R., Reniers, A. J. H. M., Ranasinghe, R., Roelvink, J. A., & Ruessink, B. G. (2012). On bar growth and decay during interannual net offshore migration. Coastal Engineering, 60(1), 190–200. https://doi.org/10.1016/J.COASTALENG.2011.10.002

Wengrove, M. E., Schipper, M. A. D., Lippmann, T. C., & Foster, D. L. (2022). Surfzone bedform migration and sediment flux implications to large scale morphologic evolution. Geomorphology, 410, 108246. https://doi.org/10.1016/j.geomorph.2022.108246

Wiggs, G. F. S., Baird, A. J., & Atherton, R. J. (2004). The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology. https://doi.org/10.1016/j.geomorph.2003.09.002

Wijnberg, K. M., & Terwindt, J. H. J. (1995). Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Marine Geology, 126(1–4), 301–330. https://doi.org/10.1016/0025-3227(95)00084-C

Williams, I. A., Wijnberg, K. M., & Hulscher, S. J. M. H. (2018). Detection of aeolian transport in coastal images. Aeolian Research, 35, 47–57. https://doi.org/10.1016/j.aeolia.2018.09.003

Zhang, P., Sherman, D. J., & Li, B. (2021). Aeolian creep transport: A review. Aeolian Research, 51, 100711. https://doi.org/10.1016/J.AEOLIA.2021.100711

paper32-graphical abstract

Published

2024-09-19

How to Cite

van IJzendoorn, C. O., Boomaars, K., Vos, S. E., Reniers, A. J., Kuschnerus, M., & Lindenbergh, R. (2024). Detection and characterization of aeolian sand strips on the beach using permanent laser scanning. Geomorphica, 1(1). https://doi.org/10.59236/geomorphica.v1i1.32

Issue

Publication Type

Research Article

Funding data