Wood jam characteristics influence but do not fully explain wood jam morphologic functions
DOI:
https://doi.org/10.59236/geomorphica.v1i1.37Keywords:
In-stream wood, pool scour, sediment retentionAbstract
In-stream wood jams alter their surrounding channel morphology, thus setting riverscape morphology and ecosystem function. While wood jams clearly scour pools, retain sediment, and influence bank erosion, there is a lack of observational evidence of how wood jam characteristics themselves control morphologic effects. Here, I analyzed field observations of hundreds of wood jams to test the hypothesis that wood jam characteristics can predict local morphologic effects such as sediment retention, bar forcing, and pool scour. I found mixed support for this hypothesis: While jam characteristics such as porosity, channel blockage ratio, thalweg occupation, and having rootwads and multiple trunks significantly predicted morphologic effect occurrence and magnitude, they only explained a small portion of the variance in those morphologic effects. While wood jam characteristics are relevant in controlling their overall morphologic functions, those functions are both inherently variable and likely affected by numerous other factors, such as reach-scale topography, the sediment transport capacity to supply ratio, and interactions with surrounding wood and vegetation. Wood function restoration may be more effective if it targets reach-scale objectives across dynamic wood jam assemblages, instead of individual jams.
References
Abbe, T., Hrachovec, M., & Winter, S. (2018). Engineered Log Jams: Recent Developments in Their Design and Placement, with examples from the Pacific Northwest, U.S.A. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11031-0
Addy, S., & Wilkinson, M. (2016). An assessment of engineered log jam structures in response to a flood event in an upland gravel-bed river: Engineered Log Jam Assessment. Earth Surface Processes and Landforms, 41(12), 1658–1670. https://doi.org/10.1002/esp.3936
Addy, S., & Wilkinson, M. E. (2019). Representing natural and artificial inchannel large wood in numerical hydraulic and hydrological models. Wiley Interdisciplinary Reviews: Water, 6(6). https://doi.org/10.1002/wat2.1389
Andersen, D. C., Stricker, C. A., & Nelson, S. M. (2016). Wood decay in desert riverine environments. Forest Ecology and Management, 365, 83–95. https://doi.org/10.1016/j.foreco.2016.01.023
Brummer, C. J., Abbe, T. B., Sampson, J. R., & Montgomery, D. R. (2006). Influence of vertical channel change associated with wood accumulations on delineating channel migration zones, Washington, USA. Geomorphology, 80(3–4), 295–309. https://doi.org/10.1016/j.geomorph.2006.03.002
Buffington, J. M., Lisle, T. E., Woodsmith, R. D., & Hilton, S. (2002). Controls on the size and occurrence of pools in coarse-grained forest rivers. River Research and Applications, 18(6), 507–531. https://doi.org/10.1002/rra.693
Bureau of Reclamation and U.S. Army Corps of Engineers. (2015). National Large Wood Manual: Assessment, Planning, Design, and Maintenance of Large Wood in Fluvial Ecosystems: Restoring Process, Function, and Structure (p. 628) [Tech report].
Burton, K., Foley, S., & Mavros, B. (2000). Cedar River Chinook Salmon (Oncorhynchus tshawytscha) Redd Survey Report, 2000: Spawning Habitat Characteristics, Spatial and Temporal Redd Distributions, and the Incidence of Spawning Sockeye in the Vicinity of Incubating Chinook [Tech report]. Prepared for Seattle Public Utilities.
Cashman, Matthew J., Harvey, G. L., & Wharton, G. (2021). Structural complexity influences the ecosystem engineering effects of instream large wood. Earth Surface Processes and Landforms, 46(10), esp.5145. https://doi.org/10.1002/esp.5145
Cashman, Matthew Joseph, Wharton, G., Harvey, G. L., Naura, M., & Bryden, A. (2018). Trends in the use of large wood in UK river restoration projects: insights from the National River Restoration Inventory: Trends in the Use of Large Wood in UK River Restoration Projects. Water and Environment Journal, 33(3). https://doi.org/10.1111/wej.12407
Cherry, J., & Beschta, R. L. (1989). Coarse Woody Debris and Channel Morphology: A Flume Study. Journal of the American Water Resources Association, 25(5), 1031–1036. https://doi.org/10.1111/j.1752-1688.1989.tb05417.x
Collins, B. D., Montgomery, D. R., Fetherston, K. L., & Abbe, T. B. (2012). The floodplain large-wood cycle hypothesis: A mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology, 139–140, 460–470. https://doi.org/10.1016/j.geomorph.2011.11.011
Dufour, S., & Piégay, H. (2009). From the myth of a lost paradise to targeted river restoration: forget natural references and focus on human benefits. River Research and Applications, 25(5), 568–581. https://doi.org/10.1002/rra.1239
Flitcroft, R. L., Brignon, W. R., Staab, B., Bellmore, J. R., Burnett, J., Burns, P., Cluer, B., Giannico, G., Helstab, J. M., Jennings, J., Mayes, C., Mazzacano, C., Mork, L., Meyer, K., Munyon, J., Penaluna, B. E., Powers, P., Scott, D. N., & Wondzell, S. M. (2022). Rehabilitating Valley Floors to a Stage 0 Condition: A Synthesis of Opening Outcomes. Frontiers in Environmental Science, 10, 892268. https://doi.org/10.3389/fenvs.2022.892268
Follett, E., Schalko, I., & Nepf, H. (2021). Logjams with a lower gap: Backwater rise and flow distribution beneath and through logjam predicted by twobox momentum balance. Geophysical Research Letters, 48(16). https://doi.org/10.1029/2021GL094279
Fox, M., & Bolton, S. (2007). A Regional and Geomorphic Reference for Quantities and Volumes of Instream Wood in Unmanaged Forested Basins of Washington State. North American Journal of Fisheries Management, 27(1), 342–359. https://doi.org/10.1577/M05-024.1
Galia, T., Poledniková, Z., & Škarpich, V. (2024). Impact of large wood on sediment (dis)connectivity in a meandering river. Geomorphology, 453, 109153. https://doi.org/10.1016/j.geomorph.2024.109153
Geertsema, T. J., Torfs, P. J. J. F., Eekhout, J. P. C., Teuling, A. J., & Hoitink, A. J. F. (2020). Woodinduced backwater effects in lowland streams. River Research and Applications, 36(7), 1171–1182. https://doi.org/10.1002/rra.3611
Gippel, C., O’Neill, I., Finlayson, B., & Schnatz, I. (1996). Hydraulic guidelines for the re-introduction and management of large woody debris in lowland rivers. Regulated Rivers: Research & Management, 12, 223–236.
Grabowski, R. C., Gurnell, A. M., BurgessGamble, L., England, J., Holland, D., Klaar, M. J., Morrissey, I., Uttley, C., & Wharton, G. (2019). The current state of the use of large wood in river restoration and management. Water and Environment Journal, 33(3), 366–377. https://doi.org/10.1111/wej.12465
Gurnell, A. M., & Bertoldi, W. (2020). Extending the conceptual model of river island development to incorporate different tree species and environmental conditions. River Research and Applications, 36(8), 1730–1747. https://doi.org/10.1002/rra.3691
Gurnell, A. M., Tockner, K., Edwards, P., & Petts, G. (2005). Effects of deposited wood on biocomplexity of river corridors. Frontiers in Ecology and the Environment, 3(7), 377–382. https://doi.org/10.1890/1540-9295(2005)003[0377:EODWOB]2.0.CO;2
Hiers, J. K., Jackson, S. T., Hobbs, R. J., Bernhardt, E. S., & Valentine, L. E. (2016). The Precision Problem in Conservation and Restoration. Trends in Ecology & Evolution, 31(11), 820–830. https://doi.org/10.1016/j.tree.2016.08.001
Kail, J. (2003). Influence of large woody debris on the morphology of six central European streams. Geomorphology, 51(1–3), 207–223. https://doi.org/10.1016/S0169-555X(02)00337-9
Keller, E. A., & Swanson, F. J. (1979). Effects of Large Organic Material on Channel Form and Fluvial Processes. Earth Surface Processes, 4(4), 361–380. https://doi.org/10.1002/esp.3290040406
Kramer, N., & Wohl, E. (2017). Rules of the road: A qualitative and quantitative synthesis of large wood transport through drainage networks. Geomorphology, 279, 74–97. https://doi.org/10.1016/j.geomorph.2016.08.026
Latterell, J. J., Scott Bechtold, J., O’Keefe, T. C., Pelt, R., & Naiman, R. J. (2006). Dynamic patch mosaics and channel movement in an unconfined river valley of the Olympic Mountains. Freshwater Biology, 51(3), 523–544. https://doi.org/10.1111/j.1365-2427.2006.01513.x
Leung, V. (2019). Large woody debris and river morphology in scour pool formation, dam removal, and delta formation [Phd thesis, University of Washington]. http://hdl.handle.net/1773/45030
Livers, B., & Wohl, E. (2021). All Logjams Are Not Created Equal. Journal of Geophysical Research: Earth Surface, 126(8). https://doi.org/10.1029/2021JF006076
Manners, R. B., Doyle, M. W., & Small, M. J. (2007). Structure and hydraulics of natural woody debris jams. Water Resources Research, 43(6). https://doi.org/10.1029/2006WR004910
Martens, K. D., & Devine, W. D. (2023). Pool formation and the role of instream wood in small streams in predominantly second-growth forests. Environmental Management, 71(5), 1011–1023. https://doi.org/10.1007/s00267-022-01771-z
Martens, K. D., Devine, W. D., Minkova, T. V., & Foster, A. D. (2019). Stream Conditions after 18 Years of Passive Riparian Restoration in Small Fish-bearing Watersheds. Environmental Management, 63(5), 673–690. https://doi.org/10.1007/s00267-019-01146-x
Matheson, A., Thoms, M., & Reid, M. (2017). Does reintroducing large wood influence the hydraulic landscape of a lowland river system? Geomorphology, 292, 128–141. https://doi.org/10.1016/j.geomorph.2017.03.035
Merten, E., Vaz, P. G., Decker-Fritz, J. A., Finlay, J. C., & Stefan, H. G. (2013). Relative importance of breakage and decay as processes depleting large wood from streams. Geomorphology, 190, 40–47. https://doi.org/10.1016/j.geomorph.2013.02.006
Mikuś, P., Wyżga, B., Kaczka, R. J., Walusiak, E., & Zawiejska, J. (2013). Islands in a European mountain river: Linkages with large wood deposition, flood flows and plant diversity. Geomorphology, 202, 115–127. https://doi.org/10.1016/j.geomorph.2012.09.016
Montgomery, D. R., Buffington, J. M., Smith, R. D., Schmidt, K. M., & Pess, G. (1995). Pool Spacing in Forest Channels. Water Resources Research, 31(4), 1097–1105. https://doi.org/10.1029/94WR03285
Müller, S., Follett, E. M., Ouro, P., & Wilson, C. A. M. E. (2022). Influence of ChannelSpanning Engineered Logjam Structures on Channel Hydrodynamics. Water Resources Research, 58(12). https://doi.org/10.1029/2022WR032111
Ockelford, A., Wohl, E., RuizVillanueva, V., Comiti, F., Piégay, H., Darby, S., Parsons, D., Yochum, S. E., Wolstenholme, J., White, D., Uno, H., Triantafillou, S., Stroth, T., Smrdel, T., Scott, D. N., Scamardo, J. E., Rees, J., Rathburn, S., Morrison, R. R., … Aarnink, J. (2024). Working with wood in rivers in the Western United States. River Research and Applications, 40(8), 1626–1641. https://doi.org/10.1002/rra.4331
Pagliara, S., & Kurdistani, S. M. (2017). Flume experiments on scour downstream of wood stream restoration structures. Geomorphology, 279, 141–149. https://doi.org/10.1016/j.geomorph.2016.10.013
Pfeiffer, A., & Wohl, E. (2018). Where Does Wood Most Effectively Enhance Storage? Network-Scale Distribution of Sediment and Organic Matter Stored by Instream Wood. Geophysical Research Letters, 45(1), 194–200. https://doi.org/10.1002/2017GL076057
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Ravazzolo, D., Mao, L., Picco, L., Sitzia, T., & Lenzi, M. A. (2015). Geomorphic effects of wood quantity and characteristics in three Italian gravel-bed rivers. Geomorphology, 246, 79–89. https://doi.org/10.1016/j.geomorph.2015.06.012
Ravazzolo, D., Spreitzer, G., Tunnicliffe, J., & Friedrich, H. (2022). The effect of large wood accumulations with rootwads on local geomorphic changes. Water Resources Research, 58(5). https://doi.org/10.1029/2021WR031403
Roni, P., Beechie, T. J., Pess, G., & Hanson, K. (2015). Wood placement in river restoration: fact, fiction, and future direction. Canadian Journal of Fisheries and Aquatic Sciences, 72(3), 466–478. https://doi.org/10.1139/cjfas-2014-0344
RStudio Team. (2020). RStudio: Integrated Development Environment for R. RStudio, PBC.
Sass, G. G. (2009). Coarse Woody Debris in Lakes and Streams. In Encyclopedia of Inland Waters (pp. 60–69). Elsevier. https://doi.org/10.1016/B978-012370626-3.00221-0
Schalko, I. (2020). Wood retention at inclined racks: Effects on flow and local bedload processes. Earth Surface Processes and Landforms, 45(9), 12. https://doi.org/10.1002/esp.4864
Schalko, I., & Nepf, H. M. (2024). Enhanced flow variability and morphological changes through individual wood placements on a gravel bed. Geomorphology, 453, 109135. https://doi.org/10.1016/j.geomorph.2024.109135
Schalko, I., Ponce, M., Lassar, S., Schwindt, S., Haun, S., & Nepf, H. (2024). Flow and Turbulence Due To Wood Contribute to Declogging of Gravel Bed. Geophysical Research Letters, 51(2), e2023GL107507. https://doi.org/10.1029/2023GL107507
Schalko, I., Wohl, E., & Nepf, H. M. (2021). Flow and wake characteristics associated with large wood to inform river restoration. Scientific Reports, 11(1), 8644. https://doi.org/10.1038/s41598-021-87892-7
Scherer, R. (2004). Decomposition and Longevity of In-Stream Woody Debris: A Review of Literature From North America. In G. J. Scrimgeour, B. Eisler, B. McCulloch, U. Silins, & M. Monita (Eds.), Forest Land–Fish Conference II – Ecosystem Stewardship through Collaboration.
Scott, D. N. (2024). Widespread wood placement and regrading drive lateral connectivity and reworking of the channel and floodplain in a valley bottom reset to Stage 0. Geomorphology, 446, 108987. https://doi.org/10.1016/j.geomorph.2023.108987
Scott, D. N., Wohl, E., & Yochum, S. E. (2019). Wood Jam Dynamics Database and Assessment Model (WooDDAM): A framework to measure and understand wood jam characteristics and dynamics: Wood Jam Dynamics Database and Assessment Model (WooDDAM). River Research and Applications, 35(9). https://doi.org/10.1002/rra.3481
Seixas, G. B., Veldhuisen, C. N., & Olis, M. (2020). Wood controls on pool spacing, step characteristics and sediment storage in headwater streams of the northwestern Cascade Mountains. Geomorphology, 348, 106898. https://doi.org/10.1016/j.geomorph.2019.106898
Spänhoff, B., & Meyer, E. I. (2004). Breakdown rates of wood in streams. Journal of the North American Benthological Society, 23(2), 189–197. https://doi.org/10.1899/0887-3593(2004)023<0189:BROWIS>2.0.CO;2
Stout, J. C., Rutherfurd, I. D., Grove, J., Webb, A. J., Kitchingman, A., Tonkin, Z., & Lyon, J. (2018). Passive Recovery of Wood Loads in Rivers. Water Resources Research, 54(11), 8828–8846. https://doi.org/10.1029/2017WR021071
Svoboda, C. D., & Russell, K. (2011). Flume Analysis of Engineered Large Wood Structures for Scour Development and Habitat. World Environmental and Water Resources Congress 2011, 2572–2581. https://doi.org/10.1061/41173(414)267
Wallerstein, N. P., Alonso, C. V., Bennett, S. J., & Thorne, C. R. (2001). Distorted Froudescaled flume analysis of large woody debris. Earth Surface Processes and Landforms, 26(12), 1265–1283. https://doi.org/10.1002/esp.271
Wheaton, J. M., Bennett, S. N., Bouwes, N., Maestas, J. D., & Shahverdian, S. (2019). Low-Tech Process-Based Restoration of Riverscapes: Design Manual. Version 1.0. https://doi.org/10.13140/RG.2.2.19590.63049/2
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Williams, R., Bangen, S., Gillies, E., Kramer, N., Moir, H., & Wheaton, J. (2020). Let the river erode! Enabling lateral migration increases geomorphic unit diversity. Science of the Total Environment, 715, 136817. https://doi.org/10.1016/j.scitotenv.2020.136817
Wohl, E., Kramer, N., Ruiz-Villanueva, V., Scott, D. N., Comiti, F., Gurnell, A. M., Piegay, H., Lininger, K. B., Jaeger, K. L., Walters, D. M., & Fausch, K. D. (2019). The Natural Wood Regime in Rivers. BioScience, 69(4), 259–273. https://doi.org/10.1093/biosci/biz013
Wohl, E., Marshall, A. E., Scamardo, J., White, D., & Morrison, R. R. (2022). Biogeomorphic influences on river corridor resilience to wildfire disturbances in a mountain stream of the Southern Rockies, USA. Science of The Total Environment, 820, 153321. https://doi.org/10.1016/j.scitotenv.2022.153321
Wohl, E., & Scott, D. N. (2017). Wood and sediment storage and dynamics in river corridors. Earth Surface Processes and Landforms, 42(1), 5–23. https://doi.org/10.1002/esp.3909
Wohl, E., Uno, H., Dunn, S. B., Kemper, J. T., Marshall, A., MeansBrous, M., Scamardo, J. E., & Triantafillou, S. P. (2023). Why wood should move in rivers. River Research and Applications, 40(6), 976–987. https://doi.org/10.1002/rra.4114
Zhang, N., & Rutherfurd, I. D. (2020). The effect of instream logs on river bank erosion: field measurements of hydraulics and erosion rates. Earth Surface Processes and Landforms, 45(7), 1677–1690. https://doi.org/10.1002/esp.4838
Zhang, N., Rutherfurd, I. D., & Ghisalberti, M. (2019). The effect of instream logs on bank erosion potential: a flume study with multiple logs. Journal of Ecohydraulics, 5(1), 57–70. https://doi.org/10.1080/24705357.2019.1669495

Downloads
Additional Files
Published
How to Cite
Issue
Publication Type
License
Copyright (c) 2024 Daniel N. Scott

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
U.S. Forest Service
Grant numbers 22-CS-11132422-391