Cobble motion characterisation with smart sensors through laboratory experiments for ground-based landslide monitoring
DOI:
https://doi.org/10.59236/geomorphica.v1i1.42Keywords:
Boulders, Laboratory experiments, Smart sensors, Landslide, Ground monitoringAbstract
Landslides often contain boulders on their surface or within the landslide body. Embedding sensors inside boulders within a landslide may help monitor its movement and dynamics. In this study, smart sensors were tested for tracking movements of a cobble, estimating its magnitude and mode of movement in dedicated laboratory experiments. The cobble was embedded with a sensor equipped with accelerometers, gyroscopes, and magnetometers. The experiments consisted of letting the cobble travel down an inclined plane. By changing the angle of the inclined plane, the cobble showed different modes of movement such as rolling and, when embedded in a thin sand layer, sliding. While travelling down the slope, the cobble was tracked to infer its position from camera videos. Raw sensor data were used for motion detection and discerning the mode of movement. Sensor-based acceleration and camera-based position were fed to a Kalman filter to derive the cobble velocity and compute the total kinetic energy to characterise the motion magnitude. Furthermore, LoRaWAN wireless transmission was tested by burying the cobble in sand layers of different thickness. The experiments contributed to understanding how the sensor functions and may be applied in the field for landslide monitoring, modelling and early warning systems.References
AHRS. (2019). Attitude and Heading Reference Systems. https://pypi.org/project/AHRS/.
Auflič, M. J., Herrera, G., Mateos, R. M., Poyiadji, E., Quental, L., Severine, B., Peternel, T., Podolszki, L., Calcaterra, S., Kociu, A., Warmuz, B., Jelének, J., Hadjicharalambous, K., Peterson Becher, G., Dashwood, C., Ondrus, P., Minkevičius, V., Todorović, S., Møller, J. J., & Marturia, J. (2023). Landslide monitoring techniques in the Geological Surveys of Europe. Landslides, 20, 951–965. https://doi.org/10.1007/s10346-022-02007-1
Bennett, G. L., Miller, S. R., Roering, J. J., & Schmidt, D. A. (2016). Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction. Geology, 44(5), 363–366. https://doi.org/10.1130/g37530.1
Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 120, 122–125.
Carlà, T., Intrieri, E., Di Traglia, F., Nolesini, T., Gigli, G., & Casagli, N. (2017). Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides, 14(2), 517–534. https://doi.org/10.1007/s10346-016-0731-5
Casagli, N., Frodella, W., Morelli, S., Tofani, V., Ciampalini, A., Intrieri, E., Raspini, F., Rossi, G., Tanteri, L., & Lu, P. (2017). Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters, 4(1). https://doi.org/10.1186/s40677-017-0073-1
Castagnetti, C., Bertacchini, E., Corsini, A., & Capra, A. (2013). Multi-sensors integrated system for landslide monitoring: critical issues in system setup and data management. European Journal of Remote Sensing, 46(1), 104–124. https://doi.org/10.5721/eujrs20134607
Caviezel, A., Demmel, S. E., Ringenbach, A., Bühler, Y., Lu, G., Christen, M., Dinneen, C. E., Eberhard, L. A., von Rickenbach, D., & Bartelt, P. (2019). Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes. Earth Surface Dynamics, 7(1), 199–210. https://doi.org/10.5194/esurf-7-199-2019
Caviezel, A., Ringenbach, A., Demmel, S. E., Dinneen, C. E., Krebs, N., Bühler, Y., Christen, M., Meyrat, G., Stoffel, A., Hafner, E., Eberhard, L. A., von Rickenbach, D., Simmler, K., Mayer, P., Niklaus, P. S., Birchler, T., Aebi, T., Cavigelli, L., Schaffner, M., & Rickli, S. (2021). The relevance of rock shape over mass—implications for rockfall hazard assessments. Nature Communications, 12(5546). https://doi.org/10.1038/s41467-021-25794-y
Caviezel, A., Schaffner, M., Cavigelli, L., Niklaus, P. S., Bühler, Y., Bartelt, P., Magno, M., & Benini, L. (2018). Design and Evaluation of a Low-Power Sensor Device for Induced Rockfall Experiments. IEEE Transactions on Instrumentation and Measurement, 67(4), 767–779. https://doi.org/10.1109/tim.2017.2770799
Chang, C., & Wang, G. (2022). Creep of clayey soil induced by elevated pore-water pressure: Implication for forecasting the time of failure of rainfall-triggered landslides. Engineering Geology, 296, 106461. https://doi.org/10.1016/j.enggeo.2021.106461
Clark, M. J. (2023). Monitoring and Characterising Grain Scale Fluvial Bed-load Transport Behaviour using Passive and Active Sensors [Phdthesis, University of East Anglia]. https://ueaeprints.uea.ac.uk/id/eprint/93970/
Coombs, S. P., Apostolov, A., Take, W. A., & Benoît, J. (2020). Mobility of dry granular flows of varying collisional activity quantified by smart rock sensors. Canadian Geotechnical Journal, 57(10), 1484–1496. https://doi.org/10.1139/cgj-2018-0278
Crosta, G. B., Agliardi, F., Rivolta, C., Alberti, S., & Dei Cas, L. (2017). Long-term evolution and early warning strategies for complex rockslides by real-time monitoring. Landslides, 14(5), 1615–1632. https://doi.org/10.1007/s10346-017-0817-8
De Blasio, F. V. (2011). Introduction to the physics of landslides - Lecture notes on the dynamics of mass wasting (p. 408). Springer Dordrecht. https://doi.org/10.1007/978-94-007-1122-8
Dewhirst, O. P., Evans, H. K., Roskilly, K., Harvey, R. J., Hubel, T. Y., & Wilson, A. M. (2016). Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecology and Evolution, 6(17), 6210–6222. https://doi.org/10.1002/ece3.2359
Díaz, E. O. (2019). 3D Motion of Rigid Bodies - A Foundation for Robot Dynamics Analysis (p. 474). Springer Cham. https://doi.org/10.1007/978-3-030-04275-2
Dini, B., Bennett, G. L., Franco, A. M. A., Whitworth, M. R. Z., Cook, K. L., Senn, A., & Reynolds, J. M. (2021). Development of smart boulders to monitor mass movements via the Internet of Things: a pilot study in Nepal. Earth Surface Dynamics, 9(2), 295–315. https://doi.org/10.5194/esurf-9-295-2021
Dini, B., Manconi, A., Loew, S., & Chophel, J. (2020). The Punatsangchhu-I dam landslide illuminated by InSAR multitemporal analyses. Scientific Reports, 10, 8304. https://doi.org/10.1038/s41598-020-65192-w
Dost, J. B., Gronz, O., Casper, M. C., & Krein, A. (2020). The potential of Smartstone probes in landslide experiments: how to read motion data. Natural Hazards and Earth System Sciences, 20(12), 3501–3519. https://doi.org/10.5194/nhess-20-3501-2020
Dragino LPS8 manual. (2021). LPS8 LoRaWAN Gateway User Manual, Document Version: 1.3.0. https://www.dragino.com/downloads/downloads/LoRa_Gateway/LPS8/LPS8_LoRaWAN_Gateway_User_Manual_v1.3.2.pdf
Feng, D., Shi, Y., Zhao, R., Chen, Y., Zhang, P., Guo, H., & Guo, T. (2023). Study on the mechanism of buffer absorbing energy of double-layer heterostructure based on viscoelastic materials for MEMS devices. Sensors and Actuators A: Physical, 364, 114790. https://doi.org/10.1016/j.sna.2023.114790
Frosio, I., Pedersini, F., & Borghese, N. A. (2009). Autocalibration of MEMS Accelerometers. IEEE Transactions on Instrumentation and Measurement, 58(6), 2034–2041. https://doi.org/10.1109/tim.2008.2006137
Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162(1), 227–252. https://doi.org/10.1016/j.earscirev.2016.08.011
Gauld, J., Atkinson, P. W., Silva, J. P., Senn, A., & Franco, A. M. A. (2023). Characterisation of a new lightweight LoRaWAN GPS bio-logger and deployment on griffon vultures Gyps fulvus. Animal Biotelemetry, 11(1), 1–20. https://doi.org/10.1186/s40317-023-00329-y
Glueck, M., Oshinubi, D., & Manoli, Y. (2013). Automatic realtime offset calibration of gyroscopes. IEEE Sensors Applications Symposium Proceedings, 214–218. https://doi.org/10.1109/SAS.2013.6493589
Gronz, O., Hiller, P. H., Wirtz, S., Becker, K., Iserloh, T., Seeger, M., Brings, C., Aberle, J., Casper, M. C., & Ries, J. B. (2016). Smartstones: A small 9-axis sensor implanted in stones to track their movements. CATENA, 142, 245–251. https://doi.org/10.1016/j.catena.2016.03.030
Handwerger, A. L., Huang, M.-H., Jones, S. Y., Amatya, P., Kerner, H. R., & Kirschbaum, D. B. (2022). Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine. Natural Hazards and Earth System Sciences, 22, 753–773. https://doi.org/10.5194/nhess-22-753-2022
Hart, J. K., & Martinez, K. (2022). Sensor Networks and Geohazards. In J. J. F. Shroder (Ed.), Treatise on Geomorphology (Vol. 1, pp. 100–120). Academic Press. https://doi.org/10.1016/B978-0-12-818234-5.00037-7
Intrieri, E., Carlà, T., & Gigli, G. (2019). Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Science Reviews, 193, 333–349. https://doi.org/10.1016/j.earscirev.2019.03.019
Kim, Y., & Bang, H. (2019). Introduction to Kalman filter and its applications. In Kalman Filter (pp. 1–17). InTechOpen. https://doi.org/10.5772/intechopen.80600
Lacroix, P., Handwerger, A. L., & Bièvre, G. (2020). Life and death of slow-moving landslides. Nature Reviews Earth and Environment, 1(8), 404–419. https://doi.org/10.1038/s43017-020-0072-8
Le Breton, M., Baillet, L., Larose, E., Rey, E., Benech, P., Jongmans, D., Guyoton, F., & Jaboyedoff, M. (2019). Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring. Engineering Geology, 250, 1–10. https://doi.org/10.1016/j.enggeo.2018.12.027
Le Breton, M., Liébault, F., Baillet, L., Charléty, A., Larose, E., & Tedjini, S. (2022). Dense and long-term monitoring of earth surface processes with passive RFID — a review. Earth-Science Reviews, 234, 104225. https://doi.org/10.1016/j.earscirev.2022.104225
Leinauer, J., Weber, S., Cicoira, A., Beutel, J., & Krautblatter, M. (2023). An approach for prospective forecasting of rock slope failure time. Communications Earth & Environment, 4(1), 1–10. https://doi.org/10.1038/s43247-023-00909-z
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep Learning for Generic Object Detection: A Survey. International Journal of Computer Vision, 128(2), 261–318. https://doi.org/10.1007/s11263-019-01247-4
Madgwick, S. O. H., Harrison, A. J. L., & Vaidyanathan, R. (2011). Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE International Conference on Rehabilitation Robotics, 1–7. https://doi.org/10.1109/ICORR.2011.5975346
Mahony, R., Hamel, T., Morin, P., & Malis, E. (2012). Nonlinear complementary filters on the special linear group. International Journal of Control, 85(10), 1557–1573. https://doi.org/10.1080/00207179.2012.693951
Makris, S., Manzella, I., & Sgarabotto, A. (2024). Scale‐dependent processes and runout in bidisperse granular flows: Insights from laboratory experiments and implications for rock/debris avalanches. Journal of Geophysical Research: Earth Surface, 129(9), 1–23. https://doi.org/10.1029/2023JF007469
Maniatis, G. (2021). On the use of IMU (inertial measurement unit) sensors in geomorphology. Earth Surface Processes and Landforms, 46(11), 2136–2140. https://doi.org/10.1002/esp.5197
Manzella, I., Penna, I., Kelfoun, K., & Jaboyedoff, M. (2016). High-mobility of unconstrained rock avalanches: Numerical simulations of a laboratory experiment and an Argentinian event. Proceedings of the 12th International Symposium on Landslides, 1345–1352. https://doi.org/10.1201/9781315375007
Mao, F., Khamis, K., Krause, S., Clark, J., & Hannah, D. M. (2019). Low-Cost Environmental Sensor Networks: Recent Advances and Future Directions. Frontiers in Earth Science, 7, 221. https://doi.org/10.3389/feart.2019.00221
Miromico AG. (2020a). GPS Tracker Application Note - Gyroscope Sampling.
Miromico AG. (2020b). GPS Tracker AT Interface.
Mondini, A. C., Fausto Guzzetti, F., Chang, K.-T., Monserrat, O., Martha, T. R., & Manconi, A. (2021). Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Science Reviews, 216, 103574. https://doi.org/10.1016/j.earscirev.2021.103574
Newby, K., Bennett, G., Roskilly, K., Sgarabotto, A., Luo, C., & Manzella, I. (2024). Smart boulders for real-time detection of hazardous movement on landslides. EGU General Assembly. https://doi.org/10.5194/egusphere-egu24-394
Niklaus, P., Birchler, T., Aebi, T., Schaffner, M., L. Cavigelli, A., Caviezel, M., Magno, & Benini, L. (2017). StoneNode: A low-power sensor device for induced rockfall experiments. IEEE Sensors Applications Symposium (SAS), 1–6. https://doi.org/10.1109/sas.2017.7894081
Peng, J., Chen, D., Hassan, M. A., Maniatis, G., Wang, L., & Nie, R. (2024). Experiments on kinematic characteristics and energy dissipation in rockfall movement on a slope. Physics of Fluids, 36, 106625. https://doi.org/10.1063/5.0211417
Pollock, W., & Wartman, J. (2020). Human vulnerability to landslides. GeoHealth, 4, e2020GH000287. https://doi.org/10.1029/2020GH000287
Redmon, J., Santosh, D., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. ArXiv. https://doi.org/10.48550/arxiv.1506.02640
Roskilly, K., Bennett, G., Clark, M., Franco, A., Egedusevic, M., Curtis, R., Jones, J., Whitworth, M., Luo, C., & Manzella, I. (2023). Smart cobbles and boulders for monitoring movement in rivers and on hillslopes. EGU General Assembly. https://doi.org/10.5194/egusphere-egu23-14870
Roskilly, K., Bennett, G., Curtis, R., Egedusevic, M., Jones, J., Whitworth, M., Dini, B., Luo, C., Manzella, I., & Franco, A. (2022). SENSUM project, Smart SENSing of landscapes Undergoing hazardous hydrogeomorphic Movement. EGU General Assembly. https://doi.org/10.5194/egusphere-egu22-10289
Shobe, C. M., Bennett, G. L., Tucker, G. E., Roback, K., Miller, S. R., & Roering, J. J. (2020). Boulders as a lithologic control on river and landscape response to tectonic forcing at the Mendocino triple junction. GSA Bulletin, 133(3–4), 647–662. https://doi.org/10.1130/b35385.1
Shobe, C. M., Turowski, J. M., Nativ, R., Glade, R. C., Bennett, G. L., & Dini, B. (2021). The role of infrequently mobile boulders in modulating landscape evolution and geomorphic hazards. Earth-Science Reviews, 220, 103717. https://doi.org/10.1016/j.earscirev.2021.103717
Sim, K. B., Lee, M. L., & Wong, S. Y. (2022). A review of landslide acceptable risk and tolerable risk. Geoenvironmental Disasters, 9(3), 1–17. https://doi.org/10.1186/s40677-022-00205-6
Soeleman, M. A., Hariadi, M., & Purnomo, M. H. (2012). Adaptive threshold for background subtraction in moving object detection using Fuzzy C-Means clustering. TENCON 2012 IEEE Region 10 Conference, 1–5. https://doi.org/10.1109/TENCON.2012.6412265
Soleimanitaleb, Z., Keyvanrad, M. A., & Jafari, A. (2019). Object Tracking Methods: A Review. 9th International Conference on Computer and Knowledge Engineering (ICCKE), 282–288. https://doi.org/10.1109/ICCKE48569.2019.8964761
Soriano-Redondo, A., Franco, A. M. A., Acácio, M., Martins, B. H., Moreira, F., & Catry, I. (2021). Flying the extra mile pays-off: Foraging on anthropogenic waste as a time and energy-saving strategy in a generalist bird. Science of the Total Environment, 782, 146843. https://doi.org/10.1016/j.scitotenv.2021.146843
Souza, B., & Benoît, J. (2024). Rockfall motion using a Smart Rock sensor. Canadian Geotechnical Journal, 61(4), 802–819. https://doi.org/10.1139/cgj-2022-0599
Stolle, J., Nistor, I., & Goseberg, N. (2016). Optical Tracking of Floating Shipping Containers in a High-Velocity Flow. Coastal Engineering Journal, 58(2), 1650005-1-1650005–1650029. https://doi.org/10.1142/s0578563416500054
Wang, C., Guo, W., Yang, K., Wang, X., & Meng, Q. (2022). Real-Time Monitoring System of Landslide Based on LoRa Architecture. Frontiers in Earth Science, 10, 1–11. https://doi.org/10.3389/feart.2022.899509
Wang, Z., Hu, J., Chen, Y., Liu, X., Liu, J., Wu, W., & Wang, Y. (2022). Integration of ground-based and space-borne radar observations for three-dimensional deformations reconstruction: application to Luanchuan mining area, China. Geomatics, Natural Hazards and Risk, 13(1), 2819–2839. https://doi.org/10.1080/19475705.2022.2134828
Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334. https://doi.org/10.1109/34.88871

Downloads
Additional Files
Published
How to Cite
Issue
Publication Type
License
Copyright (c) 2025 Alessandro Sgarabotto, Irene Manzella, Kyle Roskilly, Miles J. Clark, Georgie L. Bennett, Chunbo Luo, Aldina M. A. Franco

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Natural Environment Research Council
Grant numbers NE/V003402/1