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Abstract: 

Mathematics textbooks and other teaching materials are almost always multi-modal, 
containing text, symbolic notation, and graphics. The language of mathematics is 
precise and technical, the diagrams and graphs make extensive use of implicit 
conventions, and mathematical notation is information dense, often non-linear, and may 
occupy a cognitive space somewhere between text and graphics. Thus, to effectively 
design mathematics teaching materials, it is necessary to understand how learners 
interact with the multi-modal nature of mathematics. 

This paper begins by surveying the literature with respect to the verbal component of 
mathematics text and follows that with discussions of the visual and symbolic 
components. Finally, research that addresses the interactions amongst these modes is 
considered, and some areas requiring further research are identified. 
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Introduction 

Mathematics textbooks and other teaching materials are almost always multi-modal, 
containing text, symbolic notation, and graphics. The language of mathematics is 
precise and technical, the diagrams and graphs make extensive use of implicit 
conventions, and mathematical notation is information dense, more often than not, non-
linear, and may occupy a cognitive space somewhere between text and graphics. The 
reform movement in mathematics education endorses the use of multiple 
representations for the introduction of new concepts and objects so that students are 
expected to integrate information obtained graphically, analytically, and numerically to 
form robust schema which they can apply to novel situations. Diagrams must be 
understood and related to the text that accompanies them. Symbolic expressions need 
to be created to model real world problems and then graphs constructed from the 
symbolic models. The graphs may then guide an analytic solution that needs to be 
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interpreted in terms of the original practical problem. This highly complex interplay 
between the modes is seldom taught explicitly, but is learned (or often not learned) 
through a kind of apprenticeship. 

Thus, to effectively design mathematics teaching materials, it is necessary to 
understand how learners interact with the multi-modal nature of mathematics. How do 
they read symbolic expressions, and what meaning do they attach to them? How do 
they relate textual information to the symbols and the symbols to the graphs? To 
address these kinds of questions, we need to understand the multi-modal nature of 
mathematics on many levels, taking into account the internal structures of each mode 
and the interplay amongst them. 

This review begins by surveying the literature with respect to the verbal component 
of mathematics text and follows that with discussions of the visual and symbolic 
components. Finally, research that addresses the interactions amongst these modes is 
considered, and some areas requiring further research are identified. 

Verbal component  

The language of mathematics is informationally dense and structurally complex, 
leading several authors (Meaney, 2005, Morgan, 2006, and O’Halloran, 2005) to use 
Michael Halliday’s systemic functional linguistics (SFL) to investigate its structure. The 
most prominent characteristic, identified by all three researchers, is the use of dense 
noun phrases (nominal groups) to express complex ideas. Actions are rephrased as 
nominal groups, and the resulting text contains verbs which describe relationships 
rather than actions. For example, the statement “a third degree polynomial with real 
coefficients has at most three real roots” links two nominal groups with the relational 
verb “has.” Additionally, specialized terminology is often in conflict with common usage, 
and extensive use of logical connectives results in the complex sentences characteristic 
of mathematical text (Meaney, 2005). While these characteristics make the acquisition 
of the mathematical register problematic for many students, they support a precise and 
concise description of mathematical ideas, permitting the language to function 
effectively for the development of mathematics (O’Halloran, 2005). Halliday’s SFL also 
provides these researchers with a sociological perspective on the linguistic structure of 
mathematics text. Meaney points out that the creation of nominal groups hides human 
action while strengthening the impression of mathematics as objective truth. 
Additionally, mathematical ideas are treated as objects, leading to an impression that 
mathematics is an objective reality to be discovered. O’Halloran agrees with this 
assessment and writes of the language removing the human dimension. The students 
are placed in a passive relationship with mathematics, seeing it as something they 
cannot penetrate or create. 

Herbel-Eisenmann and Wager (2007) use critical discourse analysis to examine the 
ways mathematics textbooks influence students’ experiences of mathematics. They 
report that first person pronoun use is almost entirely restricted to we, and the reference 
appears to be to an omniscient mathematics community, rather than to a partnership of 
writer and reader. The pronoun you is used to tell the readers about themselves – you 
think, you find – leaving the author in full control of the common knowledge. This 
pronoun use, they assert, leads to a sense of depersonalization and disconnection. 
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Additionally, the reader is placed in a passive stance by language in which “the graph 
shows” rather than “the reader sees.” Morgan (2006) has found that students 

themselves often adopt the same language. A lack of hedging the words might, may, 

and could are uncommon in mathematics text and the frequent use of words implying 
certainty (must, will, clearly) contribute, according to Herbel-Eisenmann and Wager, to 
an absolutist view of mathematics itself. Moreover, the status of real life is reduced to 
examples that simply provide opportunities for the use of “real” mathematics, leading, 
they argue, to decontextualization. Meaney (2005), who also observed this demotion of 
real life, asserts that it reinforces the view that the context of mathematics is the 
mechanics of mathematics.  

The overall effect is dense, complex sentences which obscure the presence of 
people, distance the reader from the author, and portray the student as passive and 
mathematics as impersonal. 

Visual Component  

The primacy of the visual in mathematics has been observed by several 
researchers. Representing abstract phenomena that cannot be directly seen, the 
graphics appearing in mathematical text are, according to Cook (2006), essential. Sfard 
(2008) agrees, arguing that the acquisition of mathematical knowledge is visually 
mediated through diagrams, graphs, and drawings, which she classifies together with 
algebraic notation as symbolic artefacts. Presmeg (2006) also groups the symbolic and 
graphical together as mathematical signs, although in different registers, and agrees 
with Sfard that the primary modality in mathematics is visual. 

The acquisition of mathematical meaning from visual displays is complex and 
difficult. O’Halloran emphasises that learners really cannot see what is intended unless 
they already understand the conventions being used and know what it is they are 
looking for. She contends that, as a result, the visual cannot be treated autonomously, 
but must be considered in context. Cook (2006) comes to a similar conclusion, 
suggesting that guidance is important in learning from visuals, as learners must use 
prior knowledge to select what is relevant before they can use that information to 
develop mental models. Watkins, Miller, and Brubaker have shown that visual images 
do not necessarily promote meaningful learning because students’ inferences are often 
far from what is intended. In one experiment over 60% of the students constructed their 
own elaborate, and erroneous, explanations of illustrations rather than reporting simple 
observations. Watkins et al. found that, without guidance, students do not make a 
connection between text and visuals and so base their interpretations on the surface 
characteristics of the graphics. A similar result was reported by Northcut (2007) who 
discovered that when learners lack a vocabulary for describing images they turn to 
evaluation and commentary on aesthetics rather than content. Presmeg (2006) 
suggests that visuals alone are generally too specific, presenting a single concrete 
picture which may obstruct necessary generalization. For example, a common 
misunderstanding of functions as always being continuous likely arises from the almost 
universal use of smooth, continuous graphs as generic illustrations. On the other hand, 
O’Halloran observes that visuals are more intuitive than are symbolic expressions, 
allowing their use as a means to experiment and synthesize.  
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Herbel-Eisenmann and Wager (2007) found that visuals contribute as much as text 
to a disembodied, decontextualized, and detemporalized mathematics. Few humans are 

included, and those that do appear are generic or disembodied a stick figure or a hand 
pointing. Images of people doing mathematics seldom appear. People are, instead, the 
subject of mathematics; their heights are measured, their earnings calculated, their 
velocities observed. The result is to position the reader in a passive relationship with the 
subject. Northcut (2007) also takes a sociological approach, calling for the application of 
Feenberg’s critical theory of technology to scientific and technical illustrations in 
educational material. This theory provides three approaches to technology: 
instrumental, in which technology is seen as a mere tool; substantive, which considers 
the effect of technology on the environment; and critical, which addresses the social 
control of technology. Northcut contends that analytic tools are needed to get at the 
complexity of images and their interpretations and that the critical theory could provide 
understanding of the way the power of images is used. Unfortunately she does not go 
beyond advocating the development of this theoretical approach into any substantive 
demonstration of how Feenberg’s theory might work in this application. O’Halloran’s 
(2005) choice to adapt of O’Toole’s systemic functional framework to analyse the 
choices made in visuals appears more promising as it allows her to assess the social 
and educational implications of mathematical graphics, demonstrating the absence of 
human and social content from most illustrations and highlighting the socially 
problematic content of others. Cook (2006) expresses regret that educational research 
has not yet developed a theory of how to design teaching materials in mathematics that 
incorporate visuals and asserts any such theory would need to rely on understanding 
the structure of the various kinds of visuals, cognitive psychology, and sociological 
analysis. Unfortunately, she provides no direction toward such a theory. 

Taken together, the research clearly indicates the importance and complexity of 
visual mathematics, identifying both cognitive and sociological issues that need to be 
addressed.  

Symbolic component  

The symbolic expressions of mathematics can be read like language and have their 
own syntax, but are also two dimensional and so share some of the characteristics of 
diagrams. Simply reading a symbolic expression is a complex task. Gillan, Barraza, 
Karshmer, and Pazuchanics (2004) report that, as with written English, expressions are 
generally read from left to right, but with a significant amount of backtracking. Novices 
pay little attention to the parentheses used to structure expressions, choosing instead to 
focus on processing individual operations. Other researchers have found that students 
respond strongly to the visual structure of symbolic mathematics, independent of the 
semantic content. As reported by Noguiera de Lima and Tall, (2008) learners even 
mentally pick up the symbols and move them around based on rules of motion that they 
have memorized. For example, in simplifying expressions such 3a+2b+2a, students 
describe “picking up” the 2a and moving it next to the 3a before combining them to get 
5a (p.7). Kirshner and Awtry (2004) found that rules are often inferred based on visual 

structure, and visually salient rules are over generalized, so that  may 

lead learners to an erroneous assumption that (p. 5). As well, they 
found that a sense of animation develops, with the left side of an equation transforming 
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into the right, in a way that adds a temporal dimension. Similar results, especially with 
respect to the sense of animation, were reported by Landy and Goldstone (2007).  

Sfard (2008) and Presmeg (2006) both argue that mathematical symbolism is more 
than just a language with which to record mathematics. Rather, since the objects of 
mathematics are not accessible to the senses except through their symbols, the 
symbols act as objects in mathematics, and we work with these signs as if they were 
the objects signified. Mathematics, Sfard says, is an autopoietic system, creating the 
very things that it talks about. At the core of her discussion is a description of the 
process by which mathematical procedures are reified to become the objects 
represented by the symbols, a process of that is mediated symbolically. 

O’Halloran (2005), on the other hand, describes mathematical symbolism as an 
information dense language, although with strategies for organizing meaning that differ 
from those of natural language. While the symbols remove the human dimension, they 
increase the operational, relational, and existential meaning, and they can be operated 
on to solve problems without recourse to the world. Using Halliday’s SFL, she identifies 
information dense nominal groups and relational, rather than active, verbs in the 
symbolic expressions of mathematics. For example, the statement  

 

consists of two nominal groups linked by the relational verb “equals.” The actions of 
multiplying, squaring, subtracting, and calculating the derivative are hidden within the 
nominal groups. Meaney (2005), also using SFL, identifies the same structures and 
asserts that the high lexical density of symbolic mathematics allows great flexibility in 
the way symbolic expressions can be used. However, this complexity means readers 
need specific skills to unpack the meaning. Both Meaney and O’Halloran note that 
mathematical symbolism is not taught linguistically and assert that this adds to the 
difficulty students have in mastering it.  

The symbolic component of mathematics text is not well understood. General 
agreement as to whether symbolic mathematics is primarily linguistic, visual, or a hybrid 
of these modes has yet to emerge, and integration of results from the linguistic and 
cognitive perspectives is lacking. As well, little research has yet been undertaken into 
the two dimensional visual structure of mathematical expressions. 

Multimodal analysis 

Mathematics text is essentially multimodal, and researchers are in substantial 
agreement that the three modes, verbal, visual, and symbolic, are all necessary for the 
learning of mathematics. O’Halloran (2005) asserts that the different modes provide 
different ways for making meaning in mathematics and that the division of work is 
complementary. Schleppegrell (2007) agrees that the modes must work together to 
construct meaningful mathematics, language providing the context for problems, 
symbolic mathematics describing patterns or relationships, and drawings providing a 
connection to the physical world. What sets mathematical discourse apart from other 
discourses, according to Sfard (2008), is that no one mode would suffice to convey 
meaning. Presmeg (2006) goes further in suggesting that conversion amongst modes is 
useful to combat compartmentalization and facilitate the conversion of processes into 
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objects. For example, before students can make sense of operations, like differentiation, 

on polynomials they must see polynomials such as  as objects rather than 
as instructions for carrying out calculations. This reification is, Presmeg asserts, a 
necessary step in the creation of the nominal groups that make up much of mathematic 
language and symbolic representation. However, she notes that the processes involved 
in conversion are not well understood. To really get at how learners are able to make 
meaning of what they read and see, we need to understand the relations amongst the 
modes. 

Researchers have reported that the use of multiple modes in mathematics texts can 
raise problems as well as facilitate learning. Berends and van Lieshout (2009) have 
shown that the strength of the linkage between information in illustrations and 
accompanying text affects learner’s ability to solve problems. In a study of students 
working on calculus problems, Haciomeroglu and Aspinwall (2007) confirmed that 
without support from analytic thinking, images can be a hindrance rather than a help. 
However, according to Cook (2006) and to Mayer and Moreno (2003), novices have 
difficulty coordinating representations. Mayer and his colleagues and students have 
researched text and image relations for many years, providing a large body of work 
informed by cognitive psychology. Visuals and text use separate perceptual and 
cognitive pathways, they conclude, so that visuals need to be explicitly linked with the 
verbal component. Without this linkage, negative effects (lowered retention and transfer) 
can occur due to the increased cognitive load arising from split attention and double 
processing of information. Unfortunately, this body of work does not address the 
inclusion of symbolic content. 

Some form of theoretical framework is needed if we are to make real progress in 
understanding the multimodal nature of mathematics learning. Sfard’s (2008) discourse 
analysis provides insight into the structure of mathematics and the process of 
nominalization but does not include any framework for understanding the cognitive 
interactions amongst modes. O’Halloran (2005) provides useful tools for analysing 
mathematical text and symbolic expressions, but her treatment of the visual component 
is from a different point of view and her discussion of integration across modes provides 
a set of observations that seem too loosely associated to be useful for our purposes. 

Matinec and Salway (2007) provide an interesting framework for analysing image-
text relations, drawing on Barthe and Halliday to create a system based on perceivable 
characteristics and which is applicable to many genres. Two major subsystems are 
identified: status relation in terms of equality, subordination, and independence; and 
logico-semantic relation in terms of expansion, extension, and enhancement. This 
classification system could prove useful in illuminating some of the conflicting results in 
the experimental work of Mayer and his colleagues and of Berends and van Lieshout 
and has the potential to address sociological issues as well. 

Further research 

Further research is needed into the cognitive psychology involved in reading 
multimodal mathematics text. A vigorous and well developed research program 
exploring the relations between visuals and text already exists and is likely to continue. 
However research in the area of the cognitive processing of symbolic expressions is not 



Text, Symbols, and Graphics in Mathematics Education March 2010 

7 Transformative Dialogues: Teaching & Learning Journal Volume 3 Issue 3 March 2010 

extensive. Before we can really get at the interaction of symbolic mathematics with text 
and visuals, we need to know a great deal more about how symbolic expressions are 
processed, how people actually read equations, and whether equations are 
fundamentally linguistic, visual, or occupy a space between these two. 

A second research direction is toward the construction of a single overarching 
framework that could be used to analyse the interactions amongst all three modes. 
Martinec and Salway’s framework for text-image relations could prove a good candidate 
to expand to include symbolic mathematics. Such a framework would be helpful for 
researchers investigating either the cognitive or the sociologic aspects of mathematics 
text. 

Conclusion 

The abstract nature of mathematics combines with the multimodal nature of its texts 
to make any understanding of educational material in this subject extremely complex, 
requiring tools from sociology, linguistics, and cognitive psychology, at the very least. 
Much progress has been made, especially by Mayer and his colleagues working from 
the cognitive perspective and by O`Halloran and Sfard, who address the issues from 
backgrounds in linguistics and discourse analysis. A fuller understanding depends upon 
continued research and analysis by researchers from diverse backgrounds. 
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