Teaching and Research Fellowship Programs:
Encouraging Undergraduate Women To Explore Careers in Academia

Julie L. Goldberg, Women In Engineering Program

University of Maryland, College Park, MD

Women's participation in the United States work force has increased dramatically over the past twenty years\(^1\). Nevertheless, women still remain underrepresented in the fields of science and engineering. After tracing the trends of female engineers and scientists, it is apparent that "despite two decades of women swelling the ranks of doctoral scientists and engineers, the percentage of tenured faculty members who are women barely increased between 1983 and 1989; moving from just 9 percent to just below 12 percent\(^2\). However, by adding the percentages of female scientists and engineers together the absence of female engineers is hidden. In 1989, 2.7% of all the doctoral level engineers employed in higher educational 4-year institutions were women; 7.7% of the professors, 3% of the associate professors, and 7% of the assistant professors were women\(^3\).

The absence of female faculty in engineering is directly linked to the small number of women in engineering graduate programs; in 1993, 16% of the masters degrees and 11% of the doctoral degrees in engineering were awarded to women\(^4\). In order to increase the number of women in graduate programs and therefore, the pool of potential candidates for faculty positions, efforts must be made to ensure that a higher of percentage of undergraduate women have the resources to pursue a graduate education. Therefore, strategies used to address the absence of female faculty in engineering need to be initiated at the undergraduate level by providing students with an opportunity to develop the skills and confidence to perform the tasks often accomplished by graduate students and faculty.

To create this opportunity, the Women in Engineering (WIE) Program at the A. James Clark School of Engineering at the University of Maryland, College Park, implemented the Research and Teaching Fellows Programs in the Fall of 1994. Supported by a grant from the Alfred P. Sloan Foundation, female undergraduate engineering students assist faculty in meaningful research projects and in teaching undergraduate lower level engineering courses. The programs are designed to develop the students' skills and to provide opportunities to explore college teaching and research as a potential career path. In order to further illustrate the purpose, goals, and design of each program, a description is provided below.

The Research Fellows Program

Success in engineering graduate studies requires students to become actively involved in conducting research. However, undergraduate students rarely have the
opportunity to become involved in research projects and as a result, students may question their interest in and ability to engage in research. In order to provide undergraduate female students with an opportunity to gain hands-on research experience, the first Research Fellows Program was implemented in September 1994. During the Fall 1994 and Spring 1995 semester, the Program awarded a total of 24 research Fellowships. All of the Fellows were awarded a honorarium of $500.00 each semester.

An outline of the Program is provided and includes a description of the following: application and selection process, orientation, research activities, students’ experience of working with the faculty, Research Forum Celebration, and focus groups. Finally, the evaluation of the Research Fellows Program is presented.

Application and Selection Process

To be considered for a Research Fellowship, each student was required to find a faculty member to work with. Students were encouraged to join an on-going research project spearheaded by the faculty member or to create a new project with the faculty member. When a student was unsure of which faculty member to approach, the WIE office provided the student with names of possible professors. All female students enrolled in engineering courses were invited to apply.

Once “matched” with a faculty member, the student submitted an application which included the student’s transcript and a research proposal. The proposal provided a description of the project as well as an outline of the roles and responsibilities of the Fellow (i.e., the number of hours she will work each week, how she will be supervised, the goals the Fellow will meet by the end of the semester, and how the Fellow will meet these goals). Finally, the faculty and student were required to establish the faculty supervisor’s responsibilities (i.e., how frequently the team will meet, how the Fellow’s work will be evaluated, and how the faculty member will mentor the Fellow).

One of the most important aspects of the application process was that it specifically required the faculty and student to define how the faculty member planned to mentor the Fellow. For many faculty and students who have never reflected upon the meaning and role of a mentor, this provided an excellent opportunity for both to articulate the multiple ways the faculty member could help cultivate the student’s professional development. Students were awarded Fellowship based on whether the defined proposal goals fit the overall goals of the Research Fellows Program.

Orientation

During the November 1994 focus group Fellows suggested that an orientation be added to the program. As a result, in the first week of the Spring 1995 semester an orientation was held to introduce the Fellows to one another, to review the research Fellowship requirements (attending two focus groups and the Research Forum Celebration), and to complete payroll forms. In addition, in order to familiarize the Fellows to the evaluation process, a brief introduction of the purpose and function of focus groups was provided.

Becoming Involved in Research

The 1994-95 Fellows were exposed to the various steps involved in the research process. The Spring 1995 Fellows reported that they had accomplished the following: 10% worked on a grant to secure funding for a project, 50% designed experiments, 70% ran experiments, 40% completed a literature review for a project, 30% wrote a paper on
a research project, and 20% presented research at a conference or symposium. The Fall Fellows reported similar experiences. In addition, the Fellows completed other tasks including performing volume calculations, presenting research for a company funding the project, producing drawings for publication on CAD software, and completing data analysis.

Working With Faculty and Graduate Students

During the semester, the Fellows met regularly (i.e., weekly) with their assigned faculty member. Through this experience, many of the students were able to develop mentoring relationships with faculty. In addition, 40% of the 1994 Fall Fellows and 65% of the Spring Fellows reported that they worked directly with a graduate student. This contact helped the Fellows to understand some of the roles and responsibilities of graduate school and to conduct research at the graduate school level. For many, the graduate students became their role models and mentors.

Research Forum Celebration

In order to provide students with an opportunity to gain experience in presenting research, the WIE Program sponsored a Research Forum Celebration for the Fellows at the end of the Spring 1995 semester. The supervising faculty and graduate students, the Deans of the School of Engineering, and the Department Chairs were invited to attend the ceremony. Students were encouraged to invite guests, including family members.

During the celebration each Fellow had an opportunity to briefly introduce herself and explain her research topic. In addition, seven Fellows gave 5-7 minute presentations on their research projects. In order to honor their hard work and dedication, certificates were awarded to all of the Fellows.

Focus Groups

All of the students participated in two ninety-minute focus groups during each semester they were a Fellow. The primary purpose of the focus groups was to gather valuable feedback from the students so that the staff was able to change the program to better fit the students' needs. In addition, the focus groups became a forum for female engineering students from several different disciplines to meet. Within this realm, they exchanged thoughts about their experiences and provided suggestions for one another on how to communicate with their assigned faculty, locate resources, and manage their research and school assignments.

Evaluation

In order to assess the quality and effectiveness of the program, both qualitative and quantitative methods of evaluation were employed; surveys were conducted at the beginning of each focus group. According to the student participants, the first year of the WIE Research Fellowship Program was successful. When asked to rate the overall program, 95% of the students and 100% of the faculty members reported that it was good to excellent. In March, all (100%) of the students reported that they had already or were planning to recommend the program to another student.

Benefits and Outcomes

During the focus group several students discussed the importance of establishing mentoring relationship with faculty members. Similar to the beneficial outcomes cited in
the literature, many of the Fellows reported that their mentor often provided individual encouragement as well as valuable information about the formal and informal rules for their profession development (i.e., courses to take and job searching). The Fellows spoke of the positive impact that such recognition had on their experience as students.

Overall the Fellows reported that their confidence in their skills and interest in engineering had increased. In the March 1995 survey, 90% of the students agreed or strongly agreed that their experience as a Fellow had helped them to feel more confident in their ability to be an engineer while 85%, agreed or strongly agreed that their interest in engineering had increased. The Fellows increased interest in engineering was associated with a subsequent increased interest in applying to graduate school; when the Fellows were asked whether they were considering applying to graduate school before they began their Fellowship, 70% stated that they had. Thirty percent reported that they had not. Of the 70% who stated that they had considered applying, 71% reported that their experience as a Fellow had reinforced their decision. In addition, of the 30% that reported that they had not considered applying to graduate school prior to the program, 67% reported that their experience had been encouraging enough that they were now interested in applying to graduate school. One student explained in the written section of the survey, "I really had not thought about graduate school until I started research. Now I see what it is all about and how important it is."

The Teaching Fellows Program

With such few female engineering faculty, undergraduate women students rarely take engineering classes that are taught by women. In order to encourage women student to consider becoming engineering faculty members themselves, the WIE Teaching Fellowship Program was implemented in the Fall of 1994. The Program is designed to provide undergraduate female engineering students an opportunity to assist a faculty member in teaching a lower level engineering course. Through this experience, the Fellows participate in a wide range of teaching activities such as: presenting lectures, grading homework, holding office hours, referring students to other university resources (i.e. academic advising, study skills and time management, general tutoring and personal counseling), facilitating small group discussions, as well as tutoring and mentoring students. All of the Fellows were awarded a honorarium of $500.00 each semester.

The WIE Teaching Fellows Program has three components including the ECSEL (Engineering Coalition of Schools for Excellence in Education and Leadership) Teaching Fellows Program, the Summer Engineering Programs for High School Women, and the Engineering Curriculum Transformation Project. The first component, the ECSEL Teaching Fellows Program, was offered in the Fall 1994 and Spring 1995 semester. The Summer Engineering Programs are planned for the summer of 1995 while, the Curriculum Transformation Project is intended for the Fall of 1995. To provide a more in-depth understanding of these endeavors, each will be described.

The ECSEL Teaching Fellows Program

During the Fall 1994 and Spring 1995 semesters, four WIE Teaching Fellows assisted faculty in the freshman engineering design course throughout the ECSEL Teaching Fellows Program. Now in its third year of initiatives, the ECSEL Teaching Fellows Program has been successful in placing senior engineering students in the classroom to assist the faculty in teaching the required introductory course to

Women in Engineering Conference: Is Systemic Change Happening?
1995 WEPAN National Conference
engineering design (ENES 100). The Program was originally established to help new engineering students develop a connection to the School of Engineering. In essence, the Fellows interact with new students both inside and outside of the classroom by teaching information, providing referrals for assistance, mentoring, and tutoring. Also, the Fellows encourage new students to become involved in student organizations and activities. Thus, the program serves to provide opportunities for senior engineering students to develop their communication and leadership skills as well as explore college teaching as a potential career option.

Students were selected using both an application and interview process. Fellowships were awarded on the basis of the student’s leadership abilities, academic records, and interest in teaching. During the semester, the Fellows participate in a one credit hour course (“Seminar in College Teaching”) offered by the School of Engineering Student Affairs Office. This serves as both training and supervision in that the Fellows “report on the status of their particular section of ENES 100 and discuss problems that may be occurring in class and how to solve them.” In addition, Fellows are introduced to student development theory, classroom climate issues, and teaching techniques.

Evaluation of the program includes both focus group method and surveys. In a summary of the results of the focus group discussions, “many of the Fellows were interested in the possibility of teaching before becoming a Fellow. The students indicated that they have enjoyed their teaching experience, and are considering graduate school as a result of their teaching fellow experience. They have realized what goes into teaching and have gained the confidence and skills for teaching in subject areas that interest them.”

Summer Engineering Programs For High School Women

Each summer the WIE Program offers two engineering programs to high school women interested in engineering: a six week academic program for high school women who have completed 11th grade and a one week summer program for 10th through 12th graders. Both programs are designed to teach students introductory engineering principles through an experiential learning process. Fundamental concepts are conveyed through hands-on design projects, field trips, and laboratory work. Four teaching Fellows have been selected for the 1995 Summer Programs.

During the six week academic program, the high school students complete two first year introductory engineering courses. Throughout this time, the Fellows work directly with the high school students by attending class with them, answering questions during labs, and providing one-on-one tutoring. In addition, two of the Fellows also assist with instructing the labs and lectures offered during the one-week summer program. Within this experience, the Fellows have the opportunity to cultivate the younger generation of female engineers in addition to develop enhancing their teaching skills.

Engineering Curriculum Transformation Project

In the Fall 1995 semester eight faculty members and eight Teaching Fellows will take part in the first Engineering Curriculum Transformation Project. Through a seminar style approach, faculty will reconstruct a course curriculum based on diverse learning styles, more inclusive examples, and incorporation of diversity and societal issues. During the seminars, faculty will discuss issues of women, race, and class in
science and engineering, whether science and technology are biased or gendered, the
culture of engineering, paradigms for change in engineering and technology courses
(resources, sample syllabi, etc.), and techniques to ensure an inclusive classroom and an
inviting syllabus. Each faculty will be assisted by a Teaching Fellow.

At the end of the Fall semester, the faculty and Teaching Fellow will produce a
fully revised course curriculum. During the Spring 1996 semester, the Teaching Fellow
will aid the faculty member in the instruction of this revised course. In addition, the
faculty members will participate in evaluating and critiquing each other’s classes, and as
a group, will produce guidelines and recommendations for other engineering faculty
members to revise their course curriculum. In subsequent years, the newly revised
course will continue to have at least one Women in Engineering Teaching Fellow.

Benefits and Outcomes

By placing the Teaching Fellows in the classroom, undergraduate female
engineering students have the opportunity to envision themselves as a faculty members.
In addition, the Fellows provide a role model for other female engineering students. In
essence, the Teaching Fellows Program plays a critical role in changing the “chilly
climate” embedded in the culture of engineering.

Conclusion

Students rarely have an opportunity to engage in research and teaching during
their undergraduate education. By providing the programs described above,
undergraduate female engineering students are able to gain the necessary resources to
pursue a graduate degree in engineering - confidence in their research and teaching skills
as well as essential credentials to be competitive candidates for graduate programs and
financial funding. From the experience students also have an opportunity to explore
college teaching and research as potential career options. Finally, while the Research
Fellows are encouraged to develop mentoring relationships with faculty, the Teaching
Fellows become role models for other engineering students and ultimately, change the
engineering culture. In conclusion, the Research and Teaching Fellows Programs play an
instrumental role in pushing forward the frontiers of modern day engineering.

References

 Education, 66(2), 213-234.
 program at the University of Washington.” Journal of Women and Minorities in Science and
 Engineering, 1, 123-135.
7. Finney, Regan, and Johnson (1995, June). Building community through a freshman
 introduction engineering design course: The ECSEL teaching Fellows program. Paper
 presented at the meeting of American Society for Engineering Education. Anaheim, CA.