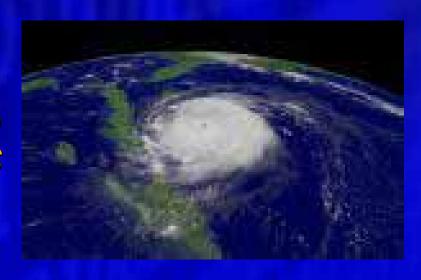
The Role of Diversity in US Competitiveness

Doug Busch

Vice President
Chief Technology Officer
Digital Health Group
Intel Corporation

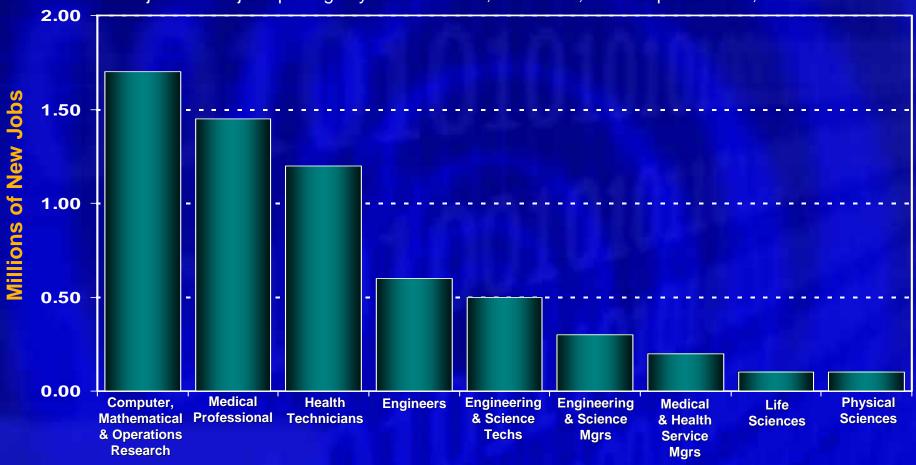
WEPAN NAMEPA Conference April 11, 2005



Three Powerful Forces Converging

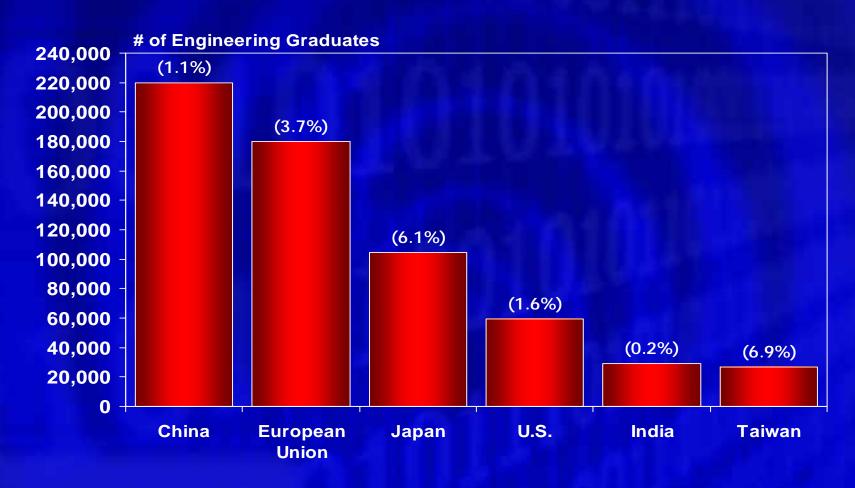
- Technology is becoming ubiquitous
- Globalization is accelerating
- U.S Demographics are changing

Science and engineering capability will be the foundation of economic success for the US in the 21st century



Demand is High

6 million job Openings are projected for Technically Trained Talent


Projected # of job openings by technical field, New Jobs, & Net replacements, 1998-2008

Source: US Bureau of Labor Statistics

Supply is International

(%) = Percent of 24 year olds with engineering degrees Source: National Science Board, "Science and Engineering Indicators – 2004"; Table 2-33. India data from 1990. NSF estimates 251k Sci & Tech degrees in 1999

Current Examples

- Radiology
- Investment Analysis
- Computer, Cell Phone Design
- Software Development
- Business Process Operations
- Research chemistry

Can I read from anywhere in the world?

Yes, if a cost-effective network infrastructure is available. At minimum, we require, OSL/ADSL, or Cable Modern connection of at least Imb/sec. Virtual Radiologic's insurance carrier extends medical liability coverage to all but a handful of countries.

Can I read at home?

Absolutely. Virtual Radiologic helps you purchase and set up your home office, dedicated workstation and necessary telecommunications equipment. Virtual Radiologic's centralized call center will assist as a "virtual secretary/technologist" to greatly limit the number of distracting phone calls during your workday.

What's "Safe"?

- 'Hands-on' local services
- Face-to-face interaction
- ???

America can not depend on the jobs that are 'safe' from global competition for our economic future

Potential Competitive Strategies

- Legal / trade barriers
- Capital investment
- Wage reductions
- Intelligent citizens
- High literacy
- Average years of education

Results

- >800,000 jobs moved outside the US, 2000-2004
- Centers of competence growing in India, China, Malaysia, Russia, ...
- Emerging market governments investing in education, infrastructure

Center of gravity is shifting --

Reality Check-Information Technology Workers

Generalized Characteristics

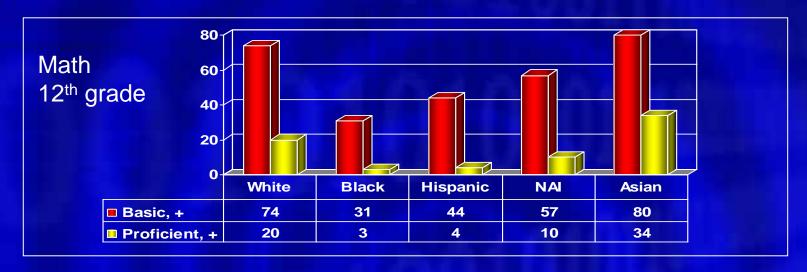
			Eastern
	<u>US</u>	<u>Asia</u>	<u>Europe</u>
Hourly wage	1.00	.30	.20
Total cost	1.00	.50	.40
Math Skills	Fair	Good	Excellent
Dev Methods	Fair	Excellent	Good
Entry Level Qual's	AA/BS	BS/MS	BS/MS
Advanced Degrees	Scarce	Available	Abundant
English Skills	Excellent	Good	Fair

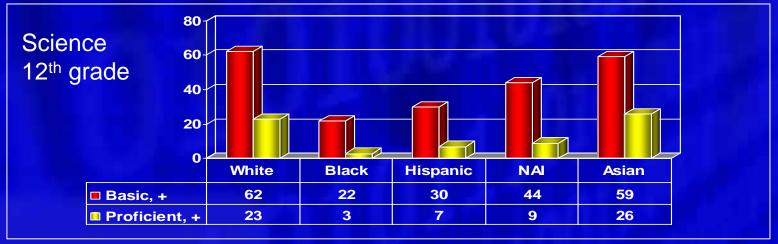
We must react swiftly-

- Make American technology workers the most <u>productive and creative</u> in the world
 - -Innovative
 - -Collaborative
 - -Highly skilled
 - -Adaptive
 - -Efficient

Critical Characteristics

- Teamwork
- Discipline
- Process oriented
- Analytical skills
- Problem solving
- Creativity
- Integrity
- Accountability
- Adaptability

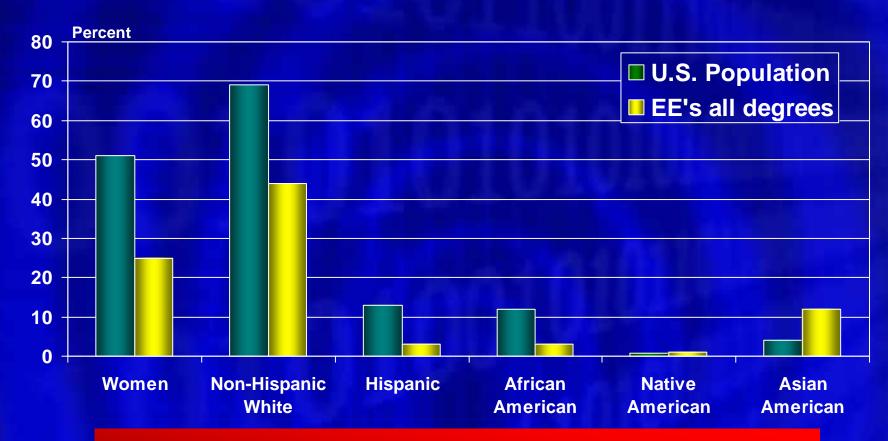



Competitive Assets

- Diversity
- Shared culture
- Creativity
- Rule of Law
- Flexibility

12th Grade Math & Science Achievement ... a national tragedy

URM Retention Rates in Engineering


Retention Rates by Selected Discipline, 2001

	Retention Rates	
Discipline	Total URM	Non-URM
Chemical Engineering	35.0	48.1
Civil Engineering	37.9	44.2
Computer Engineering	47.6	58.7
Electrical Engineering	36.3	47.2
Industrial Engineering	44.2	51.3
Mechanical Engineering	38.0	48.7
Total	38.9	49.5

Note: Retention rates for "total" include only the six disciplines listed.

Lost Opportunities

Issue: Demographic Shifts Not reflected in Enrollments, Degrees, or Workforce

Source: Report from the Engineering Workforce Commission:, 2003 Degrees, and 2000 Census Data

Challenges

- Weak cultural focus on education
- Fragmented strategy and tactics
- Slow action
- Poor follow-through
- Inadequate investment

MUST What can we do?

- Set aggressive goals
- Use data to understand what really works
- Work together collaboratively
 - Move upstream to improve K-12 education
 - Attract top talent into degree programs
 - Train them to be the best in the world
 - Retain students to graduation/advanced degrees
 - Help them grow into the next generation of leaders

Their future depends on our actions...

