STUDENT STEELWORKER

Every JOB IN THE HOMESTEAD PLANT

By Ed Sninsky
The Homestead Steel Works with its new modern mills constructed during World War II was called upon once again to provide steel for armaments. Not for aircraft carriers this time but for a new, updated armored corps, and the Steel Valley could not provide workers in sufficient quantity from normal local labor pools.

In a well-orchestrated move, United States Steel and other companies advertised that they would employ for the peak summer and fall vacation periods thousands of male college students to fill the rosters. It would be the last time employers would be allowed to be that restrictive in hiring, since fair employment practice laws and equal rights for women were on the way. I applied for a summertime job and was accepted. How could United States Steel refuse to hire a fourth Sninsky into the Homestead Works?

The severe up-and-down demand cycle for semi-finished steel was the bane of America’s steel industry, and for all its economic influence, the industry itself was the biggest victim of its own cycle. Each of the “big steel” companies, as they were known at one time, had a combination of old and new production facilities. In the Homestead Works of the United States Steel Corporation, there was a new No. 5 Open-Hearth, a good and reliable 30-year-old No. 4 Open-Hearth, and a very old No. 3 Open-Hearth. The same could be said of the coke making and blast furnaces as well as all other auxiliary units. The cost of preparing old facilities for operation after an extended shutdown was costly, sometimes unprofitable, but not to meet demand was unthinkable, especially when soon after the start of the Korean War President Truman said that the equipment of
the 12 armored divisions used in World War II was obsolete. New armored equipment was needed; more steel was required immediately; old steelmaking facilities were re-activated, and Steel had to scrounge around quickly for a workforce.

The steelworkers union—“The United Steel Workers of America”—had been in business (pun intended) for about 15 years and had become very good at representing employee rights and desires. For instance, once the union obtained paid vacation for its members, it was only a short time before they were dissatisfied with the way the company scheduled vacation times, such as 8 percent of the force in January and continuing the same way throughout the year. No worker wanted to schedule a week of vacation at Lake Erie while the lake was frozen. Yet, all the blue-collar workers could not be on vacation during the warm months, even though that’s when most white-collar workers and foremen took their time off.

The steel industry employed graduate mechanical and electrical engineers, metallurgists, and chemists in sufficient numbers but were lacking in the number of college graduates in their foreman and lower management ranks, who were the noncommissioned officers of those levels. A program was developed whereby college students with at least one year of matriculation could be hired for the period of April through September. This program satisfied the need for workers during the full production months, allowed more blue-collar workers to have their vacations during the warm months, and permitted thousands of male college students to become acquainted with steelmaking and perhaps as a result choose a career in steel. The program continued up to the time of the local steelmaking’s decline in the 1980s. It was strictly for men until the 1970s when women challenged the hiring procedure and won their case.

In May 1951, I dressed in my new steel-toed safety shoes, army pants, and a long-sleeved, heavy-duty dark blue work shirt, carried a brown paper bag containing a jumbo sandwich, two carrots, and an apple, and departed my home at 7:30 a.m. on 11th Avenue in Munhall. I walked down Martha (Carnegie) Street on my first scheduled 8 a.m. to 4 p.m. daylight work shift. Walking down Martha Street, I passed the General Superintendent’s home on 10th Avenue and proceeded to the Munhall mill gate at the bottom of Grant Street. I showed the security guard my badge, and he directed me to my reporting station. There were smiles and good-natured remarks offered everywhere. That gate was a busy place each morning as the railroad workers began their shift at 7 a.m., steelworkers at 8 a.m., and white-collar workers at 9 a.m. Add to that medley the many people awaiting streetcars to their jobs in downtown Pittsburgh and students on their way to school, and you have a picture of working America as good as it could be in 1951.

I was not alone on my walk to work. There were hundreds walking from Ravine Street, Whitaker, and Homeville. Others from Homestead would walk to the “Hole-in-the-Wall” gate on City Farm Lane or to the Amity Street gate at the entrance to the “new mill.” Others rode streetcars from Homestead Park and Lincoln Place. Included among the workers were my father in the No. 5 Open-Hearth, one brother a machinist, and another as an ingot-soaking pit worker.

This walk-to-work pattern had begun in 1871 when the Korman Steel Company established itself on the shore of the Monongahela River someplace near the eastern border of Homestead and Whitaker. Ten years later, the Carnegie group took over and the world took notice. To the big names in industry and banking, such as London and New York, would be added Pittsburgh. London or New York were either No. 1 or No. 2, depending on which side of the ocean you lived, but shortly there was no doubt about No. 3. When Carnegie delivered thousands of miles of rails to the Chicago area for industrial development, we would be downgraded to No. 4, but it took a while to do that.

Walking to work from my home completed the 4th “r” in the four-“r” equation
of the rise of Pittsburgh’s industrial development. The first “r” was a river, the second a river road, the third a railroad that usually paralleled the others, and the fourth “r” was the residential area adjacent to the other three to house the workers.

My first day was an 8 a.m. – 4 p.m. turn on a Saturday. I had attended a safety lecture at the employment office the previous day. At the General Labor shack I was assigned a locker, given a steel helmet and a free pair of work gloves, and advised that hereafter I would have to buy my own replacement gloves at 19¢ a pair. I was assigned to Labor Gang No. 9 to work under a pusher who made 8¢ an hour more than me. The pusher reported to a foreman, from there to a turn foreman, general foreman, and eventually to the department superintendent. Shortly, our gang boarded a truck to my first work place. On a two-lane asphalt road we traveled 10 m.p.h. The road was close to the river and to the river side of No. 3 Open-Hearth, where on the western edge we departed the old mill and entered the new mill. In the new mill everything had been built between 1941–1943 in order to satisfy the nation’s defense requirements for millions of tons of armor plate for World War II. Everything else was labeled as old mill.

The slow 10 m.p.h. speed was about the maximum allowed in a very congested area alive with workers and moving vehicles on the ground and cranes above. Steel mills have been described in many non-artistic ways, such as “hell with the lid off,” but no one has described them as places of a continuous variety of loud noises, especially signaling devices. To picture the congestion, use Kennywood Park today for comparison. Phantom’s Revenge roller coaster winds around the...
Thunderbolt, both of which are built around and over the Caterpillar, Whip, Kangaroo, and Auto Racer, which in turn are built around concession stands, ride entry waiting lines, floral displays, and light fixtures. Everything moves simultaneously. It is fun and tolerable in Kennywood Park, but turns into serious business in a steel mill.

The signals were not only stop and go, enter or exit, but often were different for mill-operated trucks and non-mill operated big 8- to 16-wheelers delivering machinery and other materials to unloading docks designed at any angle to any roadway. The railroads had their own signal systems and their own order of priority of travel for each type of the three railroad organizations used in the Homestead Works. In addition there were sound systems that informed all concerned to hold fast as a taphole on a furnace was blown open to run molten metal into a ladle, or a mixer ladle was tilted to run the molten metal into a transfer car ladle. I had to learn the sounds and signals of the steel mill and learn quickly. Before I had even entered the mill, I was aware of the sounds emanating from the plant, and when I was curious I’d ask workers to describe the reasons for the loud noises from No. 4 Open-Hearth—as it disturbed the homilies preached in St. Michael’s Church, just across the street.

Steelmaking was dependent on railroads from day one when iron crafting replaced the village blacksmith. In the old and new sections the different railroads all intertwined like worms in fish bait boxes. The tracks were everywhere and often placed on truck routes where a truck could follow a railroad engine for hundreds of feet.

Of the four types of railroads the oldest and most picturesque was the narrow-gauge, where track widths were two feet narrower than the broad-gauge tracks. These were used by the old 1890 steam-powered, coal-burning engines. These were found only in the old mill and in 1951 were slowly being replaced by narrow-gauge diesel, oil-powered, electric-operated engines. The designers had difficulty building a modern engine to maneuver those impossible turning radiuses designed in 1890. The next piece of rail equipment was a broad-gauge steam or diesel engine. The third was a broad-gauge diesel engine operated by a connecting company, which was a subsidiary of United States Steel, but no one could believe they worked for the same stockholders as the ordinary steelworkers. The fourth group was the mainline railroads, two of which are still operating in 2009 and whose trains cross the Amity Street entrance to the Waterfront Shopping Mall in Homestead about 50 times a day. Those lines ran through the steel mill and for your life and limb required the greatest respect. Those four railroads had their own systems of rights of way and priority of movement, and nobody provided anyone with a manual of their operating habits.

The most interesting railroad move was that of a train of submarine-shaped ladles filled with molten iron from the Carrie blast furnaces in Rankin that traveled to the opposite river side via Homestead Works hot metal bridge and Allegheny County’s one-of-only-two hot metal bridges. (The other is in Pittsburgh’s South Side at the former Jones & Laughlin Steel Works, where it enjoys a monumental historical and active use as a pedestrian and automobile bridge, a significance not afforded to any other implement of steelmaking around here.)

Once the train from Carrie arrived on the Homestead side, it could convey its molten product to either the No. 3 O.H. on a straight line move or to No. 4 O.H. by winding on a long 90-degree curve on an incline trestle above the entire old mill facilities, including the Pennsylvania Railroad mainline tracks and the “Hole in the Wall” mill gate along City Farm Lane where passenger cars traveled only a few feet from and under the ladles, or it could continue to No. 5 O.H. where it discharged its cargo train to another broad-
gauge engine to complete delivery. Space limitations in the old mill allowed no parallel tracks, and returning trains had to move onto sidetracks to allow new, fully loaded trains to pass. These movements were continuous. Side-by-side simultaneous movements were never permitted for fear of crashes. It was a commonly accepted story in the old mill that no one without gray hair was ever given the job of the dispatcher, who had the responsibility for movements of those hot metal cars.

Another most interesting railroad move was the one where molten slag in ladles was transported from Carrie across the same bridge near Kennywood Park, and then along Thompson and Bull runs to Route 885 and dumped from high on a hill to the valley below. Both day and night the color display was brilliant. The dump is now the site of Century III Mall.

The truck discharged our labor gang at the west end of No. 5 Open-Hearth below the Homestead Grays Bridge. A foreman in charge of open-hearth maintenance informed our pusher that we would labor for the carpenters, who were installing the wooden roof on top of a furnace, which then would serve as a support for an arched ceramic brick roof for the furnace. For helping the carpenters we would be paid about 4¢ more per hour than a common laborer. I hadn’t even moved a muscle yet on the job and had already received a raise. My starting rate was about $1 per hour (about $8 today).

A massive building, No. 5 Open-Hearth was the prototype of a new and modern open-hearth furnace, of which there were only two in operation at that time. The other belonged to the Jones & Laughlin Steel Corporation in its Pittsburgh South Side Works. The third and last would be constructed in the Fairless Works near Philadelphia, as open-hearths were nearing obsolescence.

We walked to the charging floor level, and I got my first look inside the building. It was full of motion and passion—at least I thought so. Inside that building were 11 individual furnaces, each capable of making a 350-ton heat of molten steel three times a day. On the same floor were four charging machines with a boom crane arm the size of a 16-inch gun on a battleship and above, all apparently in motion at one time, swung four more massive cranes. The furnaces in which the steel was made had a limited lifetime, and the brick linings were worked to exhaustion by a combination of heat, vibration, and damage that occurred when materials were placed in the furnace. The furnace roof, or its remains, would be removed and reconstructed and restored to use.

Our labor gang loaded wooden roof trusses on a manually moved trailer to a spot in front of the furnace, and then lifted them by hand into the furnaces for the carpenters to install. It should have been essentially a very simple procedure, but it rarely was. When a signal light and sound system was activated, all in the vicinity had to abandon their activity temporarily and allow the overhead crane carrying a ladle with 200 tons of molten iron to pass. No one was permitted underneath the crane passage. The noise was deafening. This type of movement occurred 11 to 16 times during an eight-hour shift. The frame of the building vibrated slightly as a well-constructed industrial building would. At the same time a broad-gauge railroad engine might deliver flatbed buggies with four open-top, casket-shaped boxes loaded with steel scrap used for the scrap mode of the furnace charge cycle. The scrap buggy train had a system of signals and sounds. The pusher was there to constantly alert you regardless of your experience.

The wooden trusses and roof boards had to be laid carefully on the floor in front of the furnace so that the charging machine with only 32 inches of clearance from floor level could pass. We laborers jumped from between crane and charging machine movement to give the carpenters what they needed. There was only 10 feet between furnaces. Also on the floor were containers of expensive Ferro alloys, water hoses for brick mortar, new and rebuilt furnace doors to replace damaged ones, and many other items. There was no way one could have a straight-away walk on the floor anywhere, as you had to dance around everything there.

Soon there was a distinct loud signal different from any other to indicate that the furnace tapping crew was about to explode out the block in the tapping hole. They used explosives and in doing so contributed immensely to the cacophony of open-hearth musical background. At the exact tapping moment everybody in the vicinity stood alertly silent just in case something went wrong when verbal direction might be needed. At any time you could be showered with red-hot cinders. When the taphole was opened, $20,000 (1952 prices) of liquid steel flowed into a ladle at the rear end of the furnace. The red sparks rose majestically and added to the aura of open-hearth artistic beauty. The all-clear signal was different from the alert signal, and when it ended it was the
cue for the danger sounds and signals to commence for the workers behind the furnace in the appropriately named pit area.

About 3 p.m., which was one hour before the shift change, a foreman arrived on the scene and asked if anyone wanted to “double out,” which was to work a second consecutive shift of eight hours. There was no compulsion, and half the gang including myself accepted. In those days overtime hours paid a 25 percent overtime bonus rate. The bonus hours in the steel industry were known as man hours paid but not worked and in time to come would be a growing serious point of irritation in labor-management relations. The foreman also said for the overtime turn we were entitled to one and only one free meal to be served on that day at the mill canteen. After establishing his point of only one meal ticket, he then said a second would be available if we were still hungry. It was a popular labor-relations gimmick. Not popular was the telephone call my girlfriend would get advising her of a date cancellation.

Soon the wooden support roof frame was complete, and we immediately began to labor for the bricklayers. We formed a human chain to pass thousands of insulating bricks, very heavy steel coated chrome brick, and assorted types by chemistry and shape, which in turn formed a beautiful arched dome on the wooden frame. I worked 16 continuous hours that day; as an opera of scrap iron banged around over and over again, a background of colorful hot sparks flew high and everywhere, and hot metal poured from ladles into molds with more sparks accentuated by shovels full of various ingredients and all kinds of smoke and vapor trails. In each step the color was more dazzling, the noise more deafening, and the danger never less.

At the end of the 16-hour work day my total earnings (including overtime bonus, shift differential, and normal hourly rate) totaled about $20, and I considered myself rich.

Returning to the labor gang building, I took full advantage of the shower room, since my home on 11th Avenue had no shower facilities in the...
bathroom. Unfortunately, I had to clothe my clean body with my very dirty work clothes, which were saturated with body sweat, wood saw dust, fine silica sand, small particles of silver graphite that hung in the air from the river to the cemetery on 22nd Avenue, black slag that hovered on top of the furnaces from the pit area below, flue dust—which in 1951 was not captured in air cleansing equipment as it would be later in the century—splashes of wet mortar that dried on your clothes, limestone and dolomite dust, and traces of asbestos dust from the wrapping on a thousand miles of pipe.

I walked home, put on pajamas, and in the cellar, soaked my work clothes in a galvanized tub to remove excess dirt prior to washing, as that is what my Slovak mother insisted be done before she would wash them in her 1913 Maytag wringer machine. Mother, as dear as any mother could be, stayed up late so that I had clean work clothes for the next day.

The following day, another 16-hour workday, I carried my work clothes and changed from street clothes to work clothes before starting work. I learned early and well. During my second day at work the pusher introduced me to a new hire. The pusher told me we would work together, and I was to break him in and give him the full benefit of my 16-hour steel mill experience. He was a literature major from University of Pittsburgh, and I was an economics major from Duquesne University. We worked together for three years and, contrary to prevailing opinion on the Duquesne campus, the Pittsburgh University boys did not feel inferior to Duquesne boys. The old-timers in the steel mill had much good-natured joking with the college boys, who soon appeared everywhere. A far cry from the atmosphere of 1892, maybe the mill was becoming something like Andrew Carnegie imagined it would be. Included among the student laborers were many from the Carnegie Institute of Technology.

The General Labor Department was at the bottom of prestige ratings. The Coke Plant, Blast Furnaces, Open-Hearth, and Finishing Mills had their own table of force requirements and their own promotion and seniority pool. The entire system for job movement, especially when a particular department added new construction or remodeled or closed some unit entirely, kept many a union grievance official working full time at office work instead of his less prestigious mill job, kept the management of the personnel department racing to keep up with grievance demands, and kept the state labor arbitrators making decisions that pleased few and were only valid until next month’s problems arose.

My General Labor Department was organized along the same lines but was never as important as the others. The General Labor Pool acted as a conduit to better paying and less difficult jobs in other departments, although all the other departments could hire directly from the street since the churches, clubs, bars, and other social organizations—at which the family stood uppermost—contained employees who quickly became aware of job openings and who had enough influence to make common hiring recommendations to the people in the mill who were, in turn, their friends, relatives, and confidants. When I was there, the General Labor Pool must have totaled about 250 men, no women. The laborers were 95 percent African Americans plus some Eastern Europeans who had language problems that precluded them from more responsible positions.

The years 1951 to 1954 were maximum production years for the steel industry, and one outstanding consequence of peak production was that there were never enough workers for all the steel mills in Pittsburgh, Aliquippa, Cleveland, Youngstown, Weirton, Johnstown, Sharon, and New Castle. Steel demand from 1951 to 1954 exceeded limits in World War II and required a much greater variation of steel grades and shapes compared to former times. To satisfy this demand for labor, the steel industry hired thousands of male college students, much to the delight of
many young female clerks who worked in white-collar departments within the mill walls.

In my three years as a blue-collar, I worked in every department, doing every kind of dirty job, hot job, cold job and also many easy, comfortable jobs. There was roadway cleaning, shoveling snow, unloading trucks, piling stores, digging ditches, stacking chairs and tables in the former Sokol Hall (the only building allowed to remain from the dismantled Lower Homestead Residential Area—business meetings were held there), cleaning sewers, filling heating lanterns to prevent freezing of track switches in the winter, painting safety lines, shoveling grease and oily slag from underneath rolling mill run-out tables, cutting the grass of the lawns around the Carnegie Library of Homestead and the supervisors’ homes on 10th, 11th, and 12th avenues, washing the bosses’ cars, since it was the mill soot that dirtied them, and occasionally moving furniture in the private homes of the top managers when a combination business-social event was held. One thing I did not do was trim the grass of the golf putting lawn on the estate of the General Superintendent’s manor on 10th Avenue right next to the Homestead Library. That job was done by an outside private professional landscaper.

One defining feature of steel mill work was the ever-present heat. Summer or winter made little difference since a heat source overcame all normal Fahrenheit readings. When cleaning hot flue dust from collection tunnels underneath the hot checker chambers, a job which made coal mining dignified, we worked on our knees removing the hot flue dust for 10 minutes and were then allowed to rest for 20 minutes before re-entering the hot chambers. The job required three teams for nonstop work, and we were paid 10¢ per hour more as premium pay. It was hot in the blast furnaces, hot when moving molten iron in hot ladles across the river to the hot mixer in the open-hearth, hot when pouring molten iron from the mixer ladle to an already hot open-hearth furnace, hot when the furnace was tapped, hot when molten steel was poured into ingots, hot when the ingots were moved into hot-reheating soaking pits to obtain very hot uniform ingot rolling temperatures, hot when the red-hot ingots were removed from the soaking pits, hot at the blooming mills where ingots were reduced to slab size, hot in the reheating furnaces, and hot when rolling slabs into thinner plate. This all was so majestic in the new mill where hot armor plate was run out onto cooling beds hundreds of feet long where the journey from the blast furnace in Rankin ended at the eastern edge of the Mesta Machine Company. If you were lucky to be working the 4-to-12 turn when there was a semi-clear sky and you looked westward where the various hues of red-hot plate began to change to various hues of metallic gray against the colors of the setting sun, you would, as I often did, wax artistically and poetically. Many others did too, but would never admit it.

If ever a genuine movie is made of a steelworker, a General George Patton remark such as, “God, I love all of this and war too” could be said by a steelworker as he watches thousands of linear feet of armor plate cooling underneath the western sky. In fact, the first armor plate of the new mill made possible Patton’s 3rd Army drive from Normandy to the Rhine River and Admiral Nimitz’s Carrier Fleet from Tarawa to Japan, and it all began underneath the Homestead Gray’s Bridge.

Summer 1951 passed, and my fall school term began. I had made enough money to pay for my entire third year in college. Although still bereft of extra money for less important purposes, I was confident some extra money could be earned somehow, as I expected to be laid off. The summertime college boy employees were terminated with many having no regrets because of the rigorous work they had endured.
Since I was one of the first to be hired for the department under the student-employee program, I was better known to the supervisors and received more than my share of cushy jobs at hourly rates much higher than the basic standard hourly rate. The midnight turn was mine, working as the phone dispatcher man, and I filled the boredom on those turns by doing my classroom homework. Perhaps Henry Clay Frick knew that some day good things like this would happen to employees, but in the 1890s he did his best to push it away for a later time.

Working the daily 8-to-4 turns was not for college students but this worked to the delight of regular full-time employees since avoiding the other turns, especially weekends, suited them perfectly. Normally, on the weekend following the bi-weekly Friday payday there was monumental absenteeism of regular laborers, but with this new setup, college students comprised 90 percent or more of the weekend workforce, thus providing a surreal, in-attendance college campus atmosphere. The labor harmony displayed equaled an Amish family farm enterprise.

Of the many thousands employed in the Homestead Works, about 50 percent lived in Homestead, West Homestead, Munhall, and Whitaker boroughs. In any job in the mill one would see kin, neighbors, and friends everywhere. Outside the mill it was the same, and through family and social contact one would learn quickly of events in the mill and especially the available job openings—with emphasis on the more desirable jobs in the form of pay scales or ease in working conditions and atmosphere. In life outside the walls of the mills, there burgeoned an ad hoc personnel department that defies
description. By the 1950s, the Steelworker Union and mill personnel staff had solidified a rigid set of rules regarding job upward movement, mostly along seniority lines. Often workers would refuse an opening available through seniority for such reasons as job comfort and workload, more overtime in a lower paying job, three-turn scheduling instead of fixed daylight turns, or plain lack of desire to handle a job with more responsibility or a job requiring some display of supervision even though not of management rank. The mere pick-and-shovel employees, by this time, were in the minority and many employees, who may have considered themselves as just one of the boys, soon found themselves carrying a pencil and a “butcher” book and participating in impromptu meetings to discuss safety measures, injury reports, damage to equipment, and failure to meet work goals. It was not unlikely for such discussions to be held outside the walls where lack of officialdom allowed an informal ease in talk-and-listen discussions.

In 1943, when I worked in Saron’s Drugstore on 8th Avenue and Hiesel Street, a few feet from the mill walls, it was the gathering place for the Lemon Blennd drinkers, who would appear hours before starting time. Their discussions were not all about the war, sports, and women. Mill operations were openly discussed, especially when difficulties in mill operations affected their incentive pay. I’m sure similar discussions were held in Kuzma’s Bar, a door away for those who preferred boilermakers over Blennd. Drinking booze prior to entering the mill was forbidden, but your state of alertness was determined by a turn foreman.

It was in one such informal meeting outside the walls that I heard a General Foreman complain about the quality of worker that the General Labor Department was sending to the narrow-gauge, coal-fired, steam-powered engine railroad group that was responsible for most of the interdepartmental shipping needs for all units in the old mill. The workers would be assigned as track switchmen, not an easy job and highly dangerous. The temporary student workers were never assigned to that job during the first year of the student worker program, probably because we were without mill experience and the job was as unsafe as a railroad job could be. When the General Foremen heard that a large group of students would be retained for extended employment, he personally asked me if I and the other young and tender ones could handle the switching job. There in the drinking social hall at the St. Michael picnic grove on Homestead Duquesne Road, I said yes, not knowing much about the job. I soon learned. Within a few days, about a dozen of us student laborers were given a crash course in railroad operations and safety procedures. That we all took notes was impressive, but there were no tests.

The narrow-gauge steam engine was called a “dinky.” The term had other meanings and goes back
to the 1840-‘50s and around 1870 applied to these engines when first used locally. If it was used derogatively, it shouldn’t have been, because the primitive iron and steel mills had nothing better and each one replaced many a draft animal and eliminated the job of “pooper scooper” in the mills. The engine and attached coal car were about 25 feet long. It required a lot of nursing by both engine operator and switchman, which comprised its two-man crew. Coal was its fuel, and the coal car had to be refilled about every four hours by positioning it under a coal chute, with the switchman using a shovel high above the car to help move the coal down and the operator relocating it below in the coal car. During the work turn the operator would shovel coal constantly into the coal-burning chamber while the switchman moved coal from the rear to the front end of the coal car. Coal dust settled everywhere and required only a slight breeze to make it airborne. Open the door to the fire burner and you would get a hot blast of sooty black smoke in your face. Coal smoke was thick and sticky.

The product of a steam engine is steam from vaporized water, and the water tank had to be refilled often by the switchman standing on top of the engine and directing water into the storage tank. Boxes from which sand was dribbled to the tracks to improve traction had to be filled by virtually crawling under the hot engine. Greasing and oiling were constant with each emitting some noxious vapor as it hit hot moving parts. There was hot ash, a residue of burnt coal, which had to be manhandled from the ash-collecting box from underneath the engine. Closing the gate to the ash box was always an adventure when scraping away hot clinkers sticking to the gate. When all the engine servicing was done, which normally consumed 25 percent of the working time, the switchman would stand on a small platform in front of the engine with his face and body about 12 inches from the hot boiler or stand in the rear of the coal car when moving in reverse when the engine crew made its shipments. The steam had a onetime use, and then was released into the air from one escape valve and also from what seemed like a hundred other leaks around the engine. With the smoke pouring out of the chimney, there was nothing else to wish for in the way of discomfort. On a windy day you might get it all in downdrafts or nothing at all depending on your meteorological luck.

One job I preferred, and to which I was often assigned, was the switchman for the yard engine that made moves for all departments in the old mill area. The old mill layout was difficult to learn, because there had been countless additions and enlargements of existing facilities since the Pittsburgh Bessemer Steel Company had begun operation in 1879, at what was the extreme eastern end of the Homestead Works. First came two Bessemer furnaces, then blooming mills, finishing mills for making iron rails, open-hearths Nos. 1 and 2, a 23-inch mill, a 33-inch mill, then additional open-hearths, service shops, a water pump house, a 35-inch mill for structural shapes, a maintenance building, and offices. All of these were squeezed into 100 acres, where layout designers had a field day trying to outdo each other to get the most out of every square foot of industrial acreage, with thousands of feet of narrow-gauge railroad line laid in such a way to minimize the turning radius for the engines. Soon the pattern would be duplicated for the broad-gauge railroad engine often installed as an overlay on the original narrow-gauge tracks. In 1951, the layout was much the same with several thousand track switches sticking out of the ground, as practically one switch was required for each separate line. The compactness of the area never permitted much help from gasoline-fueled trucks, as they became available in the 1920s, because of their possible exposure to so many hot spots. The locomotive engineer and switchman developed a rapport and a hand-signal system to make track switches second only to what a quarterback uses on a football field.
There was one rail movement that could compete for the steel mill folklore stories, top prize. I must have made it a couple hundred times. Our engine would hook to a 10- to 15-buggy load of hot-topped ingots just poured into molds in No. 3 Open-Hearth that was built in 1898 and was now enjoying its last three years of use. It was located at the north end of former City Farm Lane, where the residential apartments of the Waterfront Shopping Complex are now located and where a City of Pittsburgh home for the needy and sick once stood. Hot-top extensions, placed on the top of the ingots to decrease the amount of shrinkage at its top, were a recent steelmaking improvement but unknown at the time No. 3 O.H. was built. There wasn’t room available for construction of a hot-top service platform. To service a train of ingots with hot tops attached, new facilities were built in the former No. 2 O.H. It was a straight run except for a gradual right turn into the building. The run paralleled the Monongahela River all the way. Our engine approached the waiting train of buggies with hot ingots standing upright like ramparts on a fortress wall. My job was to couple the engine to the first buggy. The couplers were free moving from left to right, and I had to manually position them and signal the engineer to slowly move the two couplers together. There was only 30 inches between the engine and buggy and often coupling did not occur the first time. So you tried again. Mercifully, safety decided that no hot ingot could be placed on the buggy next to the engine so the switchman could survive the heat. After coupling I stood on a step on the front end of the engine as the engineer fought the throttle to begin the run. The noise was horrific. As steam turned pistons and drive shafts rotated wheels that ground against steel rails, rails banged against wooden railroad ties to the tune of “I know I can.” This noise combined with the crescendo of one ingot buggy pushing into the next until the front end began to move and the train was off with a full and continuous whistle blast for all to hear.

The run was majestic and, if allowed to remain after the demise of the local steel industry, could have been a feature amusement for Kennywood Park. The many signal lights were activated and added to the panorama. In the summer, standing between a hot engine boiler and a hot ingot, you waited for an early winter, at which time falling water from condensing steam would settle on your face as ice. During the run I entertained myself by looking at the never-ending parade of river paddleboats, whose crews would salute us as we passed each other, enjoying the sights and sounds of the Carrie Blast Furnaces across the river, peeking at the automobile traffic on Route 837, and noting a remnant of the past in the form of a sign which read: “Notice, look out for railroad cars” in Polish, Slovak, Hungarian, Italian, and Greek. I liked reading the Slovak line “Daj Pokor na relrod kari.” A linguist would surely have seen the morphing of Slovak and English words in the warning. By this time the train hit a tremendous speed! Just exaggerating—we never traveled more than 10 m.p.h. We passed under the P-Mickey Bridge, still in use today, and I ducked my head as a train moved above, showering us with dust and rust from the bridge. On the river side of the track was an old dilapidated one story building with a water storage tank beside it, all by its lonesome, unused and ignored—deserving honor, respect, and love but not getting it. We held our breath as we made the right turn to the platform and hoped the engine would respond to reverse throttle. The engine didn’t have brakes, and we hoped the reverse throttle would stop us from running into a Pennsylvania Railroad train traveling on the track perpendicular to us. After stopping and accepting the applause of the platform crew, I disengaged the couplers and waited for those very hot 10 seconds while the engine began its reverse travel. The platform crew came out of hiding once the train was in position, directed us to anything to be returned, and we left.

In the spring of 1954 my three-year stint as a blue-collar steelworker ended. It was no surprise, since the telltale indicators of a steel demand slow down are obvious to workers and local residents much sooner than to business editors in newspapers. First, no new applications for hiring are accepted, followed by a management mandate of no more overtime. Those guilty of excessive absenteeism are threatened with suspension or firing. Fill-in temporary foreman jobs are eliminated, and job openings created by death, resignation, or retirement are left unfilled. Because of a production-not-required stigma, equipment
usually repaired on a routine basis remains untouched. These signs are slow in gathering, but relentless. Soon there are inducements to older employees to move up their retirement dates. Vacation time is taken to extend working times, work schedules are reduced to 32-hour weeks, never less, and when there are no further options the inevitable lay-off of employees begins. The massive and frequent highs and lows of steel production are as damaging to the bottom line of steel business as they are to both blue- and white-collared workers.

It was time to leave. After a brief seminar on unemployment benefits and callback possibilities, I made a special effort to thank the Superintendent and General Foreman for the consideration they had shown to me. The Superintendent I talked to at the shop; the General Foreman lived only two blocks from me, and I thanked him at home. The other student blue-collar workers did much the same. We were fortunate and perhaps treated better than others. My employment paid for my tuition and upkeep, and since I was living at home, I saved about $2,000—which was big money in the Steel Valley in those days.

I walked out of the historical Homestead Steel Works angry at nobody, and if I tried to be upset I quickly made a few comparisons with the Depression days of the 1930s, made a mental list of the favorable things that had happened to me, and then I did not feel so bad.

Edward R. Sninsky worked at the U. S. Steel Plant in Homestead for three years while attending Duquesne University. Edward graduated from Duquesne University in 1953 with a B.A. in Economics, served two years in the US Army in the South Pacific looking for downed aircraft lost from WW II, worked in the Planning and Operation Department and the Financial Analysis Department of J&L Steel for 30 years, and volunteered as a greeter and docent at the Heinz History Center for 10 years.

1 Other sources spell it “dinkey.” The following quotation is from the Thomas Bell novel Out of this Furnace, page 348: “Mr. Burke: I have received a written answer from Mr. Walling concerning the request from the dinkey men. There are some days when they work for eight hours straight without stopping. They neglect to eat their lunches because they want to get the work out, that is, they want to get the heat’s up and the steel up to the strippers.”