Incorporating flowpaths as an explicit measure of river-floodplain connectivity to improve estimates of floodplain sediment deposition
DOI:
https://doi.org/10.59236/geomorphica.v1i1.25Keywords:
2D HEC-RAS, floodplain sedimentation, floodplain topography, mercury contamination, river-floodplain connectivityAbstract
Variation in floodplain topography can lead to gradual flooding and increase river-floodplain connectivity. We show that incorporating flowpaths as an explicit measure of river-floodplain connectivity can improve estimates of floodplain sediment deposition. We focus on the floodplain of the South River, downstream of Waynesboro, Virginia, where measurements of mercury accumulation have been used to estimate decadal-scale sedimentation rates. We developed a two-dimensional Hydrologic Engineering Center's River Analysis System (2D HEC-RAS) hydrodynamic model and used simulated model results with sediment deposition data to create regression models describing sedimentation across the floodplain. All of our statistical models incorporated a flowpath length from the location on the floodplain downstream to the riverbank as an explicit measure of river-floodplain connectivity that improved our estimates of floodplain sediment deposition (r2 = 0.514). We applied our best regression model to our hydrodynamic model results to create a map of floodplain sedimentation rate and discuss differences of three separate sections of floodplain. We found that floodplains with variable topography had wider, bimodal probability distribution functions (PDFs) of sedimentation rate (aggregated spatially) than floodplains without this topographic relief (with narrower log-normal PDFs). Our work highlights how floodplain topography and river-floodplain connectivity affect sedimentation rates and can help inform the development of floodplain sediment budgets.References
Ahilan, S., Guan, M., Sleigh, A., Wright, N., & Chang, H. (2018). The influence of floodplain restoration on flow and sediment dynamics in an urban river. Journal of Flood Risk Management, 11, S986–S1001. https://doi.org/10.1111/jfr3.12251
Allen, J. R. L. (1985). Principles of Physical Sedimentology. George Allen.
Allison, M. A., Kuehl, S. A., Martin, T. C., & Hassan, A. (1998). Importance of flood-plain sedimentation for river sediment budgets and terrigenous input to the oceans: Insights from the Brahmaputra-Jamuna River. Geology, 26(2), 175–178. https://doi.org/10.1130/0091-7613(1998)026<0175:IOFPSF>2.3.CO;2
Allmendinger, N. E., Pizzuto, J. E., Moglen, G. E., & Lewicki, M. (2007). A sediment budget for an urbanizing watershed, 1951‐1996, Montgomery County, Maryland, USA. JAWRA Journal of the American Water Resources Association, 43(6), 1483–1498. https://doi.org/10.1111/j.1752-1688.2007.00122.x
Alsdorf, D. E., Rodríguez, E., & Lettenmaier, D. P. (2007). Measuring surface water from space. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2006RG000197
Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47(4), 761–776. https://doi.org/10.1046/j.1365-2427.2002.00905.x
Anees, M. T., Abdullah, K., Nawawi, M. N. M., Ab Rahman, N. N. N., Piah, A. R. M., Zakaria, N. A., & Omar, A. M. (2016). Numerical modeling techniques for flood analysis. Journal of African Earth Sciences, 124, 478–486. https://doi.org/10.1016/j.jafrearsci.2016.10.001
Asselman, N. E., & Wijngaarden, M. (2002). Development and application of a 1D floodplain sedimentation model for the River Rhine in The Netherlands. Journal of Hydrology, 268(1–4), 127–142. https://doi.org/10.1016/S0022-1694(02)00162-2
Bates, P. D., Anderson, M. G., Baird, L., Walling, D. E., & Simm, D. (1992). Modelling floodplain flows using a two‐dimensional finite element model. Earth Surface Processes and Landforms, 17(6), 575–588. https://doi.org/10.1002/esp.3290170604
Bates, P. D., Horritt, M. S., Hunter, N. M., Mason, D., & Cobby, D. (2005). Numerical modelling of floodplain flow. In P. D. Bates, S. N. Lane, & R. I. Ferguson (Eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics (pp. 271–304). John Wiley. https://doi.org/10.1002/0470015195
Belmont, P., Gran, K. B., Schottler, S. P., Wilcock, P. R., Day, S. S., Jennings, C., & Parker, G. (2011). Large shift in source of fine sediment in thTocknere Upper Mississippi River. Environmental Science and Technology, 45(20), 8804–8810. https://doi.org/10.1021/es2019109
Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058–3070. https://doi.org/10.1016/j.jenvman.2011.07.017
Benjankar, R., & Yager, E. M. (2012). The impact of different sediment concentrations and sediment transport formulas on the simulated floodplain processes. Journal of Hydrology, 450, 230–243. https://doi.org/10.1016/j.jhydrol.2012.05.009
Boechat Albernaz, M., Roelofs, L., Pierik, H. J., & Kleinhans, M. G. (2020). Natural levee evolution in vegetated fluvial‐tidal environments. Earth Surface Processes and Landforms, 45(15), 3824–3841. https://doi.org/10.1002/esp.5003
Bracken, L. J., Turnbull, L., Wainwright, J., & Bogaart, P. (2015). Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40(2), 177–188. https://doi.org/10.1002/esp.3635
Brinke, W. B., Schoor, M. M., Sorber, A. M., & Berendsen, H. J. (1998). Overbank sand deposition in relation to transport volumes during large‐magnitude floods in the Dutch sand‐bed Rhine river system. Earth Surface Processes and Landforms, 23(9), 809–824.
Brown A. G. (1996). Floodplain palaeoenvironments. In Anderson M. G., Walling D. E., & Bates P. D. (Eds.), Floodplain processes (pp. 95–138). John Wiley.
Brownlie, W. R. (1981). Prediction of flow depth and sediment discharge in open channels (Techreport KH-R-43A). Keck Laboratory of Hydraulics.
Brownlie, W. R. (1983). Flow depth in sand-bed channels. Journal of Hydraulic Engineering, 109(7), 959–990.
Brunner, G. W. (2016). HEC‐RAS river analysis system, 2D modeling user’s manual version 5.0: Vol. CPD‐68A. U.S. Army Corps of Engineers.
Bruzzesi, M. A., Singh, I. L., & Gutterman, M. (2007). Final soil, groundwater, and surface water assessment report — GENICOM facility/Schifflet property, Waynesboro, VA [Techreport]. ICOR, Ltd.
Büttner, O., Otte‐Witte, K., Krüger, F., Meon, G., & Rode, M. (2006). Numerical modelling of floodplain hydraulics and suspended sediment transport and deposition at the event scale in the middle river Elbe, Germany. Acta Hydrochimica et Hydrobiologica, 34(3), 265–278. https://doi.org/10.1002/aheh.200500626
Byrne, C. F., Stone, M. C., & Morrison, R. R. (2019). Scalable flux metrics at the channel‐floodplain interface as indicators of lateral surface connectivity during flood events. Water Resources Research, 55(11), 9788–9807. https://doi.org/10.1029/2019WR026080
Carter, L. J. (1977). Chemical Plants Leave Unexpected Legacy for Two Virginia Rivers. Science, 198(4321), 1015–1020. http://www.jstor.org/stable/1745339
Chen, Y., Overeem, I., Kettner, A. J., Gao, S., Syvitski, J. P., & Wang, Y. (2019). Quantifying sediment storage on the floodplains outside levees along the lower Yellow River during the years 1580–1849. Earth Surface Processes and Landforms, 44(2), 581–594. https://doi.org/10.1002/esp.4519
Church, C. (2019). Remediation to remove mercury from South River banks heads into final stretch. https://www.whsv.com/content/news/South-River-remediation-heads-into-final-stretch-564122941.html
Costa, J. E. (1975). Effects of agriculture on erosion and sedimentation in the Piedmont Province, Maryland. Geological Society of America Bulletin, 86(9), 1281–1286.
Covino, T. (2017). Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology, 277, 133–144. https://doi.org/10.1016/j.geomorph.2016.09.030
Czuba, J. A., David, S. R., Edmonds, D. A., & Ward, A. S. (2019). Dynamics of surface-water connectivity in a low-gradient meandering river floodplain. Water Resources Research, 55(3), 1849–1870. https://doi.org/10.1029/2018WR023527
David, S. R., Czuba, J. A., & Edmonds, D. A. (2018). Channelization of meandering river floodplains by headcutting. Geology, 47(1), 15–18. https://doi.org/10.1130/G45529.1
David, S. R., Edmonds, D. A., & Letsinger, S. L. (2017). Controls on the occurrence and prevalence of floodplain channels in meandering rivers. Earth Surface Processes and Landforms, 42(3), 460–472. https://doi.org/10.1002/esp.4002
Du, P., & Walling, D. E. (2012). Using 210Pb measurements to estimate sedimentation rates on river floodplains. Journal of Environmental Radioactivity, 103(1), 59–75. https://doi.org/10.1016/j.jenvrad.2011.08.006
Dunne, T., Mertes, L. A., Meade, R. H., Richey, J. E., & Forsberg, B. R. (1998). Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geological Society of America Bulletin, 110(4), 450–467.
Flanders, J. R., Turner, R. R., Morrison, T., Jensen, R., Pizzuto, J., Skalak, K., & Stahl, R. (2010). Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream. Applied Geochemistry, 25(11), 1756–1769. https://doi.org/10.1016/j.apgeochem.2010.09.004
Freeman, M. C., Pringle, C. M., & Jackson, C. R. (2007). Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. JAWRA Journal of the American Water Resources Association, 43(1), 5–14. https://doi.org/10.1111/j.1752-1688.2007.00002.x
Fryirs, K., & Brierley, G. (2001). Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: Implications for geomorphic river recovery. Geomorphology, 38(3–4), 237–265. https://doi.org/10.1016/S0169-555X(00)00093-3
Garcia, M. (2008). Sedimentation engineering: Processes, measurements, modeling, and practice. American Society of Civil Engineers. https://doi.org/10.1061/9780784408148
Gomez, B., Phillips, J. D., Magilligan, F. J., & James, L. A. (1997). Floodplain sedimentation and sensitivity: summer 1993 flood, Upper Mississippi River Valley. Earth Surface Processes and Landforms, 22(10), 923–936. https://doi.org/10.1144/GSL.SP.1999.163.01.06
Goodbred Jr, S. L., & Kuehl, S. A. (1998). Floodplain processes in the Bengal Basin and the storage of Ganges–Brahmaputra river sediment: an accretion study using 137Cs and 210Pb geochronology. Sedimentary Geology, 121(3–4), 239–258. https://doi.org/10.1016/S0037-0738(98)00082-7
Gray, H. J. I. F. (2018). Traveling at the Speed of Light Luminescence as a Means to Quantify Sediment Transport [Doctoral dissertation]. University of Colorado at Boulder.
Hardy, R. J., Bates, P. D., & Anderson, M. G. (2000). Modelling suspended sediment deposition on a fluvial floodplain using a two-dimensional dynamic finite element model. Journal of Hydrology, 229(3–4), 202–218. https://doi.org/10.1016/S0022-1694(00)00159-1
He, Q., & Walling, D. E. (1996a). Rates of overbank sedimentation on the floodplains of British lowland rivers documented using fallout 137Cs. Geografiska Annaler: Series A, Physical Geography, 78(4), 223–234. https://doi.org/10.1080/04353676.1996.11880469
He, Q., & Walling, D. E. (1996b). Use of fallout Pb‐210 measurements to investigate longer‐term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surface Processes and Landforms, 21(2), 141–154.
Heitmuller, F. T., Hudson, P. F., & Kesel, R. H. (2017). Overbank sedimentation from the historic AD 2011 flood along the Lower Mississippi River, USA. Geology, 45(2), 107–110. https://doi.org/10.1130/G38546.1
Hilldale, R. C., & Raff, D. (2008). Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surface Processes and Landforms, 33(5), 773–783. https://doi.org/10.1002/esp.1575
Hopkins, K. G., Noe, G. B., Franco, F., Pindilli, E. J., Gordon, S., Metes, M. J., & Hogan, D. M. (2018). A method to quantify and value floodplain sediment and nutrient retention ecosystem services. Journal of Environmental Management, 220, 65–76. https://doi.org/10.1016/j.jenvman.2018.05.013
Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1–4), 87–99. https://doi.org/10.1016/S0022-1694(02)00121-X
Hupp, C. R., & Bazemore, D. E. (1993). Temporal and spatial patterns of wetland sedimentation, West Tennessee. Journal of Hydrology, 141(1–4), 179–196. https://doi.org/10.1016/0022-1694(93)90049-F
Hupp, C. R., Kroes, D. E., Noe, G. B., Schenk, E. R., & Day, R. H. (2019). Sediment trapping and carbon sequestration in floodplains of the lower Atchafalaya Basin, LA: Allochthonous versus autochthonous carbon sources. Journal of Geophysical Research: Biogeosciences, 124(3), 663–677. https://doi.org/10.1029/2018JG004533
Hupp, C. R., & Osterkamp, W. R. (1996). Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14(4), 277–295. https://doi.org/10.1016/0169-555X(95)00042-4
Hupp, C. R., Schenk, E. R., Kroes, D. E., Willard, D. A., Townsend, P. A., & Peet, R. K. (2015). Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: Annual, decadal, centennial scales. Geomorphology, 228, 666–680. https://doi.org/10.1016/j.geomorph.2014.10.023
Jackson, R. G. (1976). Depositional model of point bars in the lower Wabash River. Journal of Sedimentary Research, 46(3), 579–594.
James, C. S. (1985). Sediment transfer to overbank sections. Journal of Hydraulic Research, 23(5), 435–452. https://doi.org/10.1080/00221688509499337
Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106(1), 110–127.
Karssenberg, D., & Bridge, J. S. (2008). A three‐dimensional numerical model of sediment transport, erosion and deposition within a network of channel belts, floodplain and hill slope: Extrinsic and intrinsic controls on floodplain dynamics and alluvial architecture. Sedimentology, 55(6), 1717–1745. https://doi.org/10.1111/j.1365-3091.2008.00965.x
Kesel, R. H., Dunne, K. C., McDonald, R. C., Allison, K. R., & Spicer, B. E. (1974). Lateral erosion and overbank deposition on the Mississippi River in Louisiana caused by 1973 flooding. Geology, 2(9), 461–464.
Kleinhans, M. G., Vries, B., Braat, L., & Oorschot, M. (2018). Living landscapes: Muddy and vegetated floodplain effects on fluvial pattern in an incised river. Earth Surface Processes and Landforms, 43(14), 2948–2963. https://doi.org/10.1002/esp.4437
Kupfer, J. A., Meitzen, K. M., & Gao, P. (2015). flooding and surface connectivity of Taxodium-Nyssa stands in a southern floodplain forest ecosystem. River Research and Applications, 31(10), 1299–1310. https://doi.org/10.1002/rra.2828
Lambert, C. P., & Walling, D. E. (1987). Floodplain sedimentation: a preliminary investigation of contemporary deposition within the lower reaches of the River Culm, Devon, UK. Geografiska Annaler: Series A, Physical Geography, 69(3–4), 393–404. https://doi.org/10.1080/04353676.1987.11880227
Lauer, J. W., & Parker, G. (2008). Modeling framework for sediment deposition, storage, and evacuation in the floodplain of a meandering river: Application to the Clark Fork River, Montana. Water Resources Research, 44(8), 1–16. https://doi.org/10.1029/2006WR005529
Lauer, J. W., Viparelli, E., & Piégay, H. (2016). Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir. Advances in Water Resources, 93, 135–149.
Leopold, L. B. (1973). River channel change with time: An example: Address as Retiring President of The Geological Society of America, Minneapolis, Minnesota, November 1972. Geological Society of America Bulletin, 84(6), 1845–1860.
Lesack, L. F., & Melack, J. M. (1995). Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake. Water Resources Research, 31(2), 329–345. https://doi.org/10.1029/94WR02271
Lewin, J., & Ashworth, P. J. (2014). The negative relief of large river floodplains. Earth-Science Reviews, 129, 1–23. https://doi.org/10.1016/j.earscirev.2013.10.014
Lewin, J., Ashworth, P. J., & Strick, R. J. (2017). Spillage sedimentation on large river floodplains. Earth Surface Processes and Landforms, 42(2), 290–305. https://doi.org/10.1002/esp.3996
Lewin, J., & Hughes, D. (1980). Welsh floodplain studies: II. Application of a qualitative inundation model. Journal of Hydrology, 46(1–2), 35–49. https://doi.org/10.1016/0022-1694(80)90034-7
Lindroth, E. M., Rhoads, B. L., Castillo, C. R., Czuba, J. A., Güneralp, I., & Edmonds, D. (2020). Spatial variability in bankfull stage and bank elevations of lowland meandering rivers: Relation to rating curves and channel planform characteristics. Water Resources Research, 56(8), e2020WR027477.
Liu, X. J., Min, F. Y., & Kettner, A. J. (2019). The impact of large to extreme flood events on floodplain evolution of the middle and lower reaches of the Yangtze River, China. Catena, 176, 394–409. https://doi.org/10.1016/j.catena.2019.01.027
Maaß, A. L., & Schüttrumpf, H. (2019). Reactivation of Floodplains in River Restorations: Long‐Term Implications on the Mobility of Floodplain Sediment Deposits. Water Resources Research, 55(10), 8178–8196. https://doi.org/10.1029/2019WR024983
Mahoney, J. M., & Rood, S. B. (1998). Streamflow requirements for cottonwood seedling recruitment—an integrative model. Wetlands, 18(4), 634–645. https://doi.org/10.1007/BF03161678
Malmon, D. V., Dunne, T., & Reneau, S. L. (2002). Predicting the fate of sediment and pollutants in river floodplains. Environmental Science and Technology, 36(9), 2026–2032. https://doi.org/10.1021/es010509
Mertes, L. A. (1997). Documentation and significance of the perirheic zone on inunyeard floodplains. Water Resources Research, 33(7), 1749–1762. https://doi.org/10.1029/97WR00658
Mertes, L. A., Dunne, T., & Martinelli, L. A. (1996). Channel-floodplain geomorphology along the Solimões-Amazon river, Brazil. Geological Society of America Bulletin, 108(9), 1089–1107.
Middelkoop, H., & Asselman, N. E. (1998). Spatial variability of floodplain sedimentation at the event scale in the Rhine–Meuse delta, The Netherlands. Earth Surface Processes and Landforms, 23(6), 561–573.
Middelkoop, H., & van der Perk, M. (1998). Modelling spatial patterns of overbank sedimentation on embanked floodplains. Geografiska Annaler—Series A: Physical Geography, 80(2), 95–109. https://doi.org/10.1111/j.0435-3676.1998.00029.x
Mizugaki, S., Nakamura, F., & Araya, T. (2006). Using dendrogeomorphology and 137Cs and 210Pb radiochronology to estimate recent changes in sedimentation rates in Kushiro Mire, Northern Japan, resulting from land use change and river channelization. Catena, 68(1), 25–40. https://doi.org/10.1016/j.catena.2006.03.014
Moody, J. A. (2019). Dynamic relations for the deposition of sediment on floodplains and point bars of a freely-meandering river. Geomorphology, 327, 585–597. https://doi.org/10.5194/esurf-4-407-2016
Naipal, V., Reick, C., Oost, K., Hoffmann, T., & Pongratz, J. (2016). Modeling long-term, large-scale sediment storage using a simple sediment budget approach. Earth Surface Dynamics, 4(2), 407–423. https://doi.org/10.5194/esurf-4-407-2016
Nakamura, F., Yajima, T., & Kikuchi, S. I. (1997). Structure and composition of riparian forests with special reference to geomorphic site conditions along the Tokachi River, northern Japan. Plant Ecology, 133(2), 209–219. https://doi.org/10.1023/A:1009787614455
Nanson, G. C., & Croke, J. C. (1992). A genetic classification of floodplains. Geomorphology, 4, 459–486. https://doi.org/10.1016/0169-555X(92)90039-Q
Narinesingh, P., Klaassen, G. J., & Ludikhuize, D. (1999). Floodplain sedimentation along extended river reaches. Journal of Hydraulic Research, 37(6), 827–845. https://doi.org/10.1080/00221689909498514
Nicholas, A. P., & Mitchell, C. A. (2003). Numerical simulation of overbank processes in topographically complex floodplain environments. Hydrological Processes, 17(4), 727–746. https://doi.org/10.1002/hyp.1162
Nicholas, A. P., & Walling, D. E. (1997). Investigating spatial patterns of medium-term overbank sedimentation on floodplains: a combined numerical modelling and radiocaesium-based approach. Geomorphology, 19(1–2), 133–150. https://doi.org/10.1016/S0169-555X(96)00043-8
Nicholas, A. P., & Walling, D. E. (1998). Numerical modelling of floodplain hydraulics and suspended sediment transport and deposition. Hydrological Processes, 12(8), 1339–1355.
Nicholas, A. P., Walling, D. E., Sweet, R. J., & Fang, X. (2006). Development and evaluation of a new catchment‐scale model of floodplain sedimentation. Water Resources Research, 42(10). https://doi.org/10.1029/2005WR004579
Nicholas, A. R., & McLelland, S. J. (2004). Computational fluid dynamics modelling of three-dimensional processes on natural river floodplains. Journal of Hydraulic Research, 42(2), 131–143. https://doi.org/10.1080/00221686.2004.9628299
Noe, G. B., Hopkins, K. G., Claggett, P. R., Schenk, E. R., Metes, M. J., Ahmed, L., & Hupp, C. R. (2022). Streambank and floodplain geomorphic change and contribution to watershed material budgets. Environmental Research Letters, 17(6), 064015. https://doi.org/10.5066/P93OUWYZ
Normally, N. R. (1967). Definition and identification of channel and overbank deposits and their respective roles in flood plain formation. The Professional Geographer, 19(1), 1–4. https://doi.org/10.1111/j.0033-0124.1967.00001.x
Park, E. (2020). Characterizing channel-floodplain connectivity using satellite altimetry: Mechanism, hydrogeomorphic control, and sediment budget. Remote Sensing of Environment, 243, 111783. https://doi.org/10.1016/j.rse.2020.111783
Park, E., & Latrubesse, E. M. (2017). The hydro-geomorphologic complexity of the lower Amazon River floodplain and hydrological connectivity assessed by remote sensing and field control. Remote Sensing of Environment, 198, 321–332. https://doi.org/10.1016/j.rse.2017.06.021
Park, E., & Latrubesse, E. M. (2019). A geomorphological assessment of wash-load sediment fluxes and floodplain sediment sinks along the lower Amazon River. Geology, 47(5), 403–406. https://doi.org/10.1130/G45769.1
Pizzuto, J. (2012). Predicting the accumulation of mercury-contaminated sediment on riverbanks-an analytical approach. Water Resources Research, 48(7), 1–13. https://doi.org/10.1029/2012WR011906
Pizzuto, J. E. (1987). Sediment diffusion during overbank flows. Sedimentology, 34(2), 301–317. https://doi.org/10.1111/j.1365-3091.1987.tb00779.x
Pizzuto, J. E. (2014). Long-term storage and transport length scale of fine sediment: Analysis of a mercury release into a river. Geophysical Research Letters, 41(16), 5875–5882. https://doi.org/10.1002/2014GL060722
Pizzuto, J. E., Moody, J. A., & Meade, R. H. (2008). Anatomy and dynamics of a floodplain. Journal of Sedimentary Research, 78(1), 16–28. https://doi.org/10.2110/jsr.2008.005
Pizzuto, J. E., Skalak, K. J., Benthem, A., Mahan, S. A., Sherif, M., & Pearson, A. J. (2023). Spatially averaged stratigraphic data to inform watershed sediment routing: An example from the Mid-Atlantic United States. Geological Society of America Bulletin, 135(1–2), 249–270. https://doi.org/10.1130/B36282.1
Pizzuto, J., & O’Neal, M. (2009). Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia. Geology, 37(1), 19–22. https://doi.org/10.1130/G25207A.1
Pizzuto, J., Schenk, E. R., Hupp, C. R., Gellis, A., Noe, G., Williamson, E., & Newbold, D. (2014). Characteristic length scales and time‐averaged transport velocities of suspended sediment in the mid‐Atlantic Region, USA. Water Resources Research, 50(2), 790–805.
Pizzuto, J., Skalak, K., Pearson, A., & Benthem, A. (2016). Active overbank deposition during the last century, South River, Virginia. Geomorphology, 257, 164–178. https://doi.org/10.1016/j.geomorph.2016.01.006
Rak, G., Kozelj, D., & Steinman, F. (2016). The impact of floodplain land use on flood wave propagation. Natural hazards, 83(1), 425–443. https://doi.org/10.1007/s11069-016-2322-0
Remo, J. W., Ryherd, J., Ruffner, C. M., & Therrell, M. D. (2018). Temporal and spatial patterns of sedimentation within the batture lands of the middle Mississippi River, USA. Geomorphology, 308, 129–141. https://doi.org/10.1016/j.geomorph.2018.02.010
Remor, M. B., Vilas Boas, M. A., Sampaio, S. C., Damatto, S. R., Stevaux, J. C., & Reis, R. R. (2022). Sedimentation rate and accumulation of nutrients in the Upper Paraná river floodplain. Journal of Radioanalytical and Nuclear Chemistry, 331(2), 1019–1027. https://doi.org/10.1007/s10967-021-08153-5
Rhoades, E. L., O’Neal, M. A., & Pizzuto, J. E. (2009). Quantifying bank erosion on the South River from 1937 to 2005, and its importance in assessing Hg contamination. Applied Geography, 29(1), 125–134. https://doi.org/10.1016/j.apgeog.2008.08.005
Saint-Laurent, D., Lavoie, L., Drouin, A., St-Laurent, J., & Ghaleb, B. (2010). Floodplain sedimentation rates, soil properties and recent flood history in southern Québec. Global and Planetary Change, 70(1–4), 76–91. https://doi.org/10.1016/j.gloplacha.2009.11.009
Schenk, E. R., Hupp, C. R., Gellis, A., & Noe, G. (2013). Developing a new stream metric for comparing stream function using a bank–floodplain sediment budget: a case study of three Piedmont streams. Earth Surface Processes and Landforms, 38(8), 771–784. https://doi.org/10.1002/esp.3314
Shenk, G. W., & Linker, L. C. (2013). Development and application of the 2010 Chesapeake Bay watershed total maximum daily load model. JAWRA Journal of the American Water Resources Association, 49(5), 1042–1056. https://doi.org/10.1111/jawr.12109
Skalak, K. J., & Pizzuto, J. (2014). Reconstructing suspended sediment mercury contamination of a steep, gravel-bed river using reservoir theory. Environmental Geosciences, 21(1), 17–35. https://doi.org/10.1306/eg.08151313007
Skalak, K., & Pizzuto, J. (2010). The distribution and residence time of suspended sediment stored within the channel margins of a gravel-bed bedrock river. Earth Surface Processes and Landforms, 35(4), 435–446. https://doi.org/10.1002/esp.1926
Stone, M. C., Byrne, C. F., & Morrison, R. R. (2017). Evaluating the impacts of hydrologic and geomorphic alterations on floodplain connectivity. Ecohydrology, 10(5), e1833.
Sumaiya, S., Czuba, J. A., Schubert, J. T., David, S. R., Johnston, G. H., & Edmonds, D. A. (2021). Sediment transport potential in a hydraulically connected river and floodplain-channel system. Water Resources Research, 57, 2020 028852. https://doi.org/10.1029/2020WR028852
Sutfin, N. A., Wohl, E. E., & Dwire, K. A. (2016). Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41(1), 38–60. https://doi.org/10.1002/esp.3857
Terry, J. P., Garimella, S., & Kostaschuk, R. A. (2002). Rates of floodplain accretion in a tropical island river system impacted by cyclones and large floods. Geomorphology, 42(3–4), 171–182. https://doi.org/10.1016/S0169-555X(01)00084-8
Terry, J. P., Kostaschuk, R. A., & Garimella, S. (2006). Sediment deposition rate in the Falefa River basin, Upolu island, Samoa. Journal of Environmental Radioactivity, 86(1), 45–63. https://doi.org/10.1016/j.jenvrad.2005.07.004
Thayer, J. B., & Ashmore, P. (2016). Floodplain morphology, sedimentology, and development processes of a partially alluvial channel. Geomorphology, 269, 160–174. https://doi.org/10.1016/j.geomorph.2016.06.040
Tichavský, R., Kluzová, O., Břežný, M., Ondráčková, L., Krpec, P., Tolasz, R., & Šilhán, K. (2018). Increased gully activity induced by short-term human interventions–Dendrogeomorphic research based on exposed tree roots. Applied Geography, 98, 66–77. https://doi.org/10.1016/j.apgeog.2018.07.008
Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological Processes, 14(16‐17), 2861–2883.
Toonen, W. H. J., Winkels, T. G., Cohen, K. M., Prins, M. A., Middelkoop, H., E., T., Bridge, J. S., & Asselman, N. E. M. (2015). Lower Rhine historical flood magnitudes of the last 450 years reproduced from grain-size measurements of flood deposits using End Member Modelling. Catena, 130, 69–81. https://doi.org/10.1016/j.catena.2014.12.004T
Törnqvist, T. E., Bridge, J. S., & Asselman, N. E. M. (1996). Quantitative analysis of overbank deposition in the Rhine–Meuse and Mississippi deltas: implications for 3-D modelling of alluvial architecture. Proceedings 3e Nederlands Aardwetenschappelijk Congres Veldhoven, Mei 1996.
Trigg, M. A., Bates, P. D., Wilson, M. D., Schumann, G., & Baugh, C. (2012). Floodplain channel morphology and networks of the middle Amazon River. Water Resources Research, 48(10). https://doi.org/10.1029/2012WR011888
Trimble, S. W. (1983). A sediment budget for Coon Creek basin in the Driftless Area, Wisconsin, 1853-1977. American Journal of Science, 283(5), 454–474. https://doi.org/10.2475/ajs.283.5.454
Trimble, S. W. (1999). Decreased rates of alluvial sediment storage in the Coon Creek Basin, Wisconsin. Science, 285(5431), 1244–1246.
Tull, N., Passalacqua, P., Hassenruck‐Gudipati, H. J., Rahman, S., Wright, K., Hariharan, J., & Mohrig, D. (2022). Bidirectional River‐Floodplain Connectivity During Combined Pluvial‐Fluvial Events. Water Resources Research, 58(3), e2021WR030492. https://doi.org/10.1029/2021WR030492
URS Corp. (2012). Final report: Ecological study of the South River and a segment of the South Fork Shenandoah River, Virginia (p. 1804). https://www.southriverscienceteam.org/news
USEPA. (2009). United States Environmental Protection Agency, Appendix A. Generic SSLs for the residential and commercial/ industrial scenarios. https://semspub.epa.gov/work/HQ/174067.pdf
USGS. (2022). EarthExplorer. https://earthexplorer.usgs.gov/
van der Steeg, S., Torres, R., Viparelli, E., Xu, H., Elias, E., & Sullivan, J. C. (2023). Floodplain Surface‐Water Circulation Dynamics: Congaree River, South Carolina, USA. Water Resources Research, 59(1), e2022WR032982.
VGIN. (2017). Virginia LiDAR Downloads. https://www.arcgis.com/home/item.html?id=1e964be36b454a12a69a3ad0bc1473ce
Viparelli, E., Wesley Lauer, J., Belmont, P., & Parker, G. (2013). A numerical model to develop long-term sediment budgets using isotopic sediment fingerprints. Computers and Geosciences, 53, 114–122. https://doi.org/10.1016/j.cageo.2011.10.003
Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 65(1–3), 209–237. https://doi.org/10.1016/0022-1694(83)90217-2
Walling, D. E., & Bradley, S. B. (1989). Rates and patterns of contemporary floodplain sedimentation: a case study of the River Culm, Devon, UK. GeoJournal, 19(1), 53–62. https://doi.org/10.1007/BF00620549
Walling, D. E., & He, Q. (1997a). Investigating spatial patterns of overbank sedimentation on river floodplains. Water, Air, and Soil Pollution, 99(1), 9–20. https://doi.org/10.1007/BF02406840
Walling, D. E., & He, Q. (1997b). Use of fallout 137Cs in investigations of overbank sediment deposition on river floodplains. Catena, 29(3–4), 263–282. https://doi.org/10.1016/S0341-8162(96)00072-0
Walling, D. E., & He, Q. (1998). The spatial variability of overbank sedimentation on river floodplains. Geomorphology, 24(2–3), 209–223. https://doi.org/10.1016/S0169-555X(98)00017-8
Walter, R. C., & Merritts, D. J. (2008). Natural streams and the legacy of water-powered mills. Science, 319(5861), 299–304. https://doi.org/10.1126/science.1151716
Ward, J. V., & Stanford, J. A. (1995). Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management, 11(1), 105–119. https://doi.org/10.1002/rrr.3450110109
Wasson, R. J. (2003). A sediment budget for the Ganga–Brahmaputra catchment. Current Science, 1041–1047.
Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., & Dewitz, J. A. (2021). Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sensing of Environment, 257, 112357. https://doi.org/10.1016/j.rse.2021.112357
Wiener, K. D., Schlegel, P. K., Grenfell, S. E., & Waal, B. (2022). Contextualising sediment trapping and phosphorus removal regulating services: A critical review of the influence of spatial and temporal variability in geomorphic processes in alluvial wetlands in drylands. Wetlands Ecology And, Management, 1–34. https://doi.org/10.1007/s11273-022-09861-9
Williams, L., Harrison, S., & O’Hagan, A. M. (2012). The use of wetlands for flood attenuation. Report for an Taisce. University College Cork, Aquatic Services Unit.
Wohl, E. (2021). An integrative conceptualization of floodplain storage. Reviews of Geophysics, 59(2), e2020RG000724. https://doi.org/10.1029/2020RG000724
Wolman, M. G., & Leopold, L. B. (1957). River flood plains: Some observations on their formation. In U.S. Geological Survey Professional Paper (pp. 87–109). U.S. https://doi.org/10.3133/pp282c
Wolman, M. G., & Miller, J. P. (1960). Magnitude and Frequency of Forces in Geomorphic Processes. The Journal of Geology, 68(1), 54–74. https://doi.org/10.1086/626637
Worley, L. C., Underwood, K. L., Vartanian, N. L., Dewoolkar, M. M., Matt, J. E., & Rizzo, D. M. (2022). Semi‐automated hydraulic model wrapper to support stakeholder evaluation: A floodplain reconnection study using 2D hydrologic engineering center’s river analysis system. River Research and Applications, 38(4), 799–809.
Xu, H., Steeg, S., Sullivan, J., Shelley, D., Cely, J. E., & Viparelli, E. (2020). Intermittent channel systems of a low-relief, low-gradient floodplain: Comparison of automatic extraction methods. Water Resources Research, 56, e2020WR027603. https://doi.org/10.1029/2020WR027603
Xu, H., Torres, R., Steeg, S., & Viparelli, E. (2021). Geomorphology of the Congaree River floodplain: Implications for the inundation continuum. Water Resources Research, 57(12), e2020WR029456. https://doi.org/10.1029/2020WR029456
Zwoliński, Z. (1992). Sedimentology and geomorphology of overbank flows on meandering river floodplains. Geomorphology, 4(6), 367–379. https://doi.org/10.1016/0169-555X(92)90032-J

Downloads
Additional Files
Published
How to Cite
Issue
Publication Type
License
Copyright (c) 2024 Sumaiya Sumaiya, John T. Schubert, Jonathan A. Czuba, James E. Pizzuto

This work is licensed under a Creative Commons Attribution 4.0 International License.