Morphometric Evaluation of the Relative Uplift Rates along the Vigan–Aggao Fault in Ilocos Norte, Philippines
DOI:
https://doi.org/10.59236/geomorphica.v1i1.28Keywords:
Morphometric analysis, Relative tectonic activity index, Vigan–Aggao Fault, PhilippinesAbstract
The Vigan–Aggao Fault (VAF) in northern Luzon Island is a NNE-trending sinistral fault divided by fault bends, which are associated with local variations in the fault’s kinematics. In this study, we examined the relative uplift rates across the fault bend in the San Juan–Vintar segment of the VAF using morphometric indices. Basin-based indices, namely hypsometric integral, basin shape, basin elongation ratio, and basin asymmetry factor, and non-basin-based indices, namely stream length-gradient index, normalized stream length-gradient index, and mountain front sinuosity were calculated to isolate and examine the surface processes that influence landscape development. We then integrated the basin-based results with geological data to create a relative tectonic activity index (RTAI). Clustering analysis of the results revealed hotspots along the bent section of the fault indicating more values that suggest higher relative uplift rates during the development of the landscape. The morphometric indices showed that the highest uplift rates are along the central VAF strands. This study described and evaluated the relative uplift rates of a known active fault system in Ilocos Norte, in the absence of detailed field structural data. This study also reinforces the utility of morphometry in identifying priority sites for detailed paleoseismic and seismic hazard analyses.
References
Aurelio, M. A. (2000a). Shear partitioning in the Philippines: Constraints from the Philippine Fault and global positioning system data. Island Arc, 9(4), 584–597. https://doi.org/10.1111/j.1440-1738.2000.00304.x
Aurelio, M. A. (2000b). Tectonics of the Philippines Revisited. Journal of Geological Society of the Philippines, 55(1–2), 119–183.
Bahrami, S. (2013). Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics. Tectonophysics, 608, 914–928. https://doi.org/10.1016/j.tecto.2013.07.026
Barrier, E., Huchon, P., & Aurelio, M. A. (1991). Philippine Fault: A key for Philippine kinematics. Geology, 19(1), 32–35.
Berdin, R. D., Siringan, F. P., & Maeda, Y. (2004). Holocene sea-level highstand and its implications for the vertical stability of Panglao Island, southwest Bohol, Philippines. Quaternary International, 115–116, 27–37. https://doi.org/10.1016/S1040-6182(03)00094-6
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystesms, 4, 1027. https://doi.org/10.1029/2001GC000252
Bull, W. B., & McFadden, L. D. (1977). Tectonic Geomorphology North and South of the Garlock Fault, California. Geomorphology in Arid Regions: A Proceedings Volume of the 8th Annual Geomorphology Symposium, 115–138. https://doi.org/10.4324/9780429299230-5
Cannon, P. J. (1976). Generation of Explicit Parameters for a Quantitative Geomorphic Study of Mill Creek Drainage Basin. Oklahoma Geology Notes, 36, 3–16.
Chen, Y. C., Sung, Q., & Cheng, K. Y. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56(1–2), 109–137. https://doi.org/10.1016/S0169-555X(03)00059-X
Cooley, S. W. (2015). GIS4Geomorphology. http://www.gis4geomorphology.com
Das, A., Prizomwala, S. P., Solanki, T., Chauhan, G., Thakkar, M. G., & Bhatt, N. (2019). Relative Assessment of Tectonic Activity along the Seismically Active Katrol Hill Fault, Kachchh, Western India. Journal of the Geological Society of India, 94(2), 179–187. https://doi.org/10.1007/s12594-019-1287-5
Davis, W. M. (1899). The Geographical Cycle. The Geographical Journal, 14(5), 481–504. http://www.jstor.org/stable/1774538
Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A. A., Motamedi, H., & Hosseiniasl, A. (2010). Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology, 121(3–4), 329–341. https://doi.org/10.1016/j.geomorph.2010.05.002
Delcaillau, B., Graveleau, F., Carlier, D. S., Rao, G., Le Béon, M., Charreau, J., & Nexer, M. (2022). Geomorphic analysis of active fold growth and landscape evolution in the central Qiulitage fold belt, southern Tian Shan, China. Geomorphology, 398, 108063. https://doi.org/10.1016/j.geomorph.2021.108063
Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86, 2825–2852. https://doi.org/10.1029/JB086iB04p02825
Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96(1–2), 150–173. https://doi.org/10.1016/j.geomorph.2007.08.004
Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. Journal of Geophysical Research, 77(23), 4432–4460. https://doi.org/10.1029/JB077i023p04432
Flores, J. F., & Balagot, V. F. (1969). The Climate of the Philippines. In H. Arakawa (Ed.), World Survey of Climatology (Vol. 8, pp. 159–213). Elsevier.
Gao, M., Xu, X., Klinger, Y., Woerd, J., & Tapponnier, P. (2017). High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-08119-2
Goudie, A. S. (2006). The Schmidt Hammer in geomorphologial research. Progress in Physical Geography, 30(6), 703–718. https://doi.org/10.1177/0309133306071954
Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1(4), 421–429.
Hare, P. W., & Gardner, T. W. (1985). Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula Costa Rica. Proceedings of the 15th Annual Binghamton Geomorphology Symposium, 123–134. http://refhub.elsevier.com/S2405-8440(23)05178-2/sref43
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2019). GPM IMERG Final Precipitation L3 1 month 0.1 degree x 0.1 degree V06, Greenbelt, MD. https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06
Hurtrez, J. E., & Lucazeau, F. (1999). Lithological control on relief and hypsometry in the Herault drainage basin (France). Comptes Rendus de l’Academie de Sciences - Serie IIa: Sciences de La Terre et Des Planetes, 328(10), 687–694. https://doi.org/10.1016/S1251-8050(99)80178-5
Keller, E. A., & Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift, and Landscape. Environmental and Engineering Geoscience, III(3), 457–466. https://doi.org/10.2113/gseegeosci.iii.3.463
Krystopowicz, N. J., Schoenbohm, L. M., Rimando, J., Brocard, G., & and Rojay, B. (2020). Tectonic geomorphology and Plio-Quaternary structural evolution of the Tuzgolu fault zone, Turkey: Implications for deformation in the interior of the Central Anatolian Plateau. Geosphere, 16(5), 1107–1124. https://doi.org/10.1130/GES02175.1
Kumar, D., & Duarah, B. P. (2020). Geomorphic signatures of active tectonics in Subansiri River Basin, eastern Himalayas. Journal of Mountain Science, 17(6), 1523–1540. https://doi.org/10.1007/s11629-019-5492-x
Li, J. (2004). Indentation tectonics in the accretionary wedge of middle Manila Trench. Chinese Science Bulletin, 49(12), 1279. https://doi.org/10.1360/03wd0412
Maeda, Y., Siringan, F., Omura, A., Berdin, R., Hosono, Y., Atsumi, S., & Nakamura, T. (2004). Higher-than-present Holocene mean sea levels in Ilocos, Palawan and Samar, Philippines. Quaternary International, 115–116, 15–26. https://doi.org/10.1016/S1040-6182(03)00093-4
Marfito, B. J., Llamas, D. C. E., & Aurelio, M. A. (2022). Geometry and Segmentation of the Philippine Fault in Surigao Strait. Frontiers in Earth Science, 10(March), 1–17. https://doi.org/10.3389/feart.2022.799803
Maxwell, K. V., Ramos, N. T., Tsutsumi, H., Chou, Y. C., Duan, F., & Shen, C. C. (2018). Late Quaternary uplift across northwest Luzon Island, Philippines constrained from emergent coral reef terraces. Earth Surface Processes and Landforms, 43(15), 3114–3132. https://doi.org/10.1002/esp.4474
Miccadei, E., Carabella, C., & Paglia, G. (2021). Morphoneotectonics of the Abruzzo Periadriatic area (Central Italy): Morphometric analysis and morphological evidence of tectonics features. Geosciences, 11(9). https://doi.org/10.3390/geosciences11090397
Mines and Geosciences Bureau. (1983). MGB Regional Geologic Map of Banna Quadrangle. Mines.
Mines and Geosciences Bureau. (1994). Geological Map of the Philippines. Geological Society of the Philippines.
Mines and Geosciences Bureau. (2010). Geology of the Philippines (2nd ed.). Geological Society of the Philippines. https://mgb.gov.ph/2015-05-25-04-46-40/2015-05-25-05-04-54/2015-05-25-05-06-36
Mulyasari, R., Brahmantyo, B., & Supartoyo. (2017). Morphometric analysis of relative tectonic activity in the Baturagung Mountain, Central Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 71(1). https://doi.org/10.1088/1755-1315/71/1/012006
Nakata, T., Tsutsumi, H., Punongbayan, R. S., Rimando, R. E., Daligdig, J. A., Daag, A. S., & Besana, G. M. (1990). Surface Faulting Associated with the Philippine Earthquake of 1990. Journal of Geography (Chigaku Zasshi), 99(5), 515–532. https://doi.org/10.5026/jgeography.99.515
Nakata, T., Tsutsumi, H., Punongbayan, R. S., Rimando, R. E., Daligdig, J. A., Daag, A. S., & Besana, G. M. (1996). Surface fault ruptures of the 1990 Luzon earthquake, Philippines.
National Mapping and Resource Information Authority (NAMRIA). (2013). Interferometric Synthetic Aperture Radar Digital Terrain Model of Ilocos Sur. https://namria.gov.ph/kiosk/namria02.htm
Ntokos, D., Lykoudi, E., & Rondoyanni, T. (2016). Geomorphic analysis in areas of low-rate neotectonic deformation: South Epirus (Greece) as a case study. Geomorphology, 263, 156–169. https://doi.org/10.1016/j.geomorph.2016.04.005
Perez, J. S., Llamas, D. C. E., Dizon, M. P., Buhay, D. J. L., Legaspi, C. J. M., Lagunsad, K. D. B., Constantino, R. C. C., Leon, R. J. B., Quimson, M. M. Y., Grutas, R. N., Pitapit, R. S. D., Rocamora, C. G. H., & Pedrosa, M. G. G. (2023). Impacts and causative fault of the 2022 magnitude (Mw) 7.0 Northwestern Luzon earthquake, Philippines. Frontiers in Earth Science, 11(February), 0–15. https://doi.org/10.3389/feart.2023.1091595
Perez, J. S., & Tsutsumi, H. (2017). Tectonic geomorphology and paleoseismology of the Surigao segment of the Philippine fault in northeastern Mindanao Island, Philippines. Tectonophysics, 699, 244–257. https://doi.org/10.1016/j.tecto.2017.02.001
Pérez-Peña, J. V., Azañón, J. M., Booth-Rea, G., Azor, A., & Delgado, J. (2009). Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. Journal of Geophysical Research: Earth Surface, 114(2), 1–15. https://doi.org/10.1029/2008JF001092
Pérez-Peña, J. V., Azor, A., Azañón, J. M., & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1–2), 74–87. https://doi.org/10.1016/j.geomorph.2010.02.020
Philippine Institute of Volcanology and Seismology. (2016). Distribution of Active Faults and Trenches in the Philippines. Philippine Institute of Volcanology.
Piacentini, D., Troiani, F., Servizi, T., Nesci, O., & Veneri, F. (2020). SLIX: A GIS toolbox to support along‐stream knickzones detection through the computation and mapping of the stream length‐gradient (SL) index. ISPRS International Journal of Geo-Information, 9(2), 1–14. https://doi.org/10.3390/ijgi9020069
Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079–1084. https://doi.org/10.1130/0016-7606(1971)82
Pillejera, J. D. B., Pasco, J. A., Dycoco, J. M. A., Ubuoan, X. N. B., Allauigan, R. M., Uy, A. A. E., Armada, L. T., Payot, B. D., Fernando, & A. G. S., R. L., Ybañez. (2017). Updated stratigraphy of Ilocos Norte (Vol. 2). Paladutaan 2017: New Perspectives - 14th National Institute of Geological Sciences Research Symposium. http://nigscon2017.weebly.com/abstract-volume.html
Pinet, N. (1990). Un exemple de grand decrochement actif en contexte de subduction oblique: la faille Philippine dans se partie Septentrionale [Université Nice Sophia Antipolis]. https://www.theses.fr/1990NICE4404
Pinet, N., & Stephan, J. F. (1990). The Philippine wrench fault system in the Ilocos Foothills, northwestern Luzon, Philippines. Tectonophysics, 183(1–4), 207–224. https://doi.org/10.1016/0040-1951(90)90417-7
Punongbayan, R. S., Rimando, R. E., Daligdig, J. A., G. M., Besana, Daag, A. S., & Nakata, T. (1992). The 16 July 1990 Luzon Earthquake Ground Rupture. The July 16, 1990 Luzon Earthquake: A Technical Monograph, 81(11), 1–32.
Ramírez-Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the acambay graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23(4), 317–332. https://doi.org/10.1002/(SICI)1096-9837(199804)23:4
Ramos, N. T., Maxwell, K. V., Tsutsumi, H., Chou, Y. C., Duan, F., Shen, C. C., & Satake, K. (2017). Occurrence of 1 ka-old corals on an uplifted reef terrace in west Luzon, Philippines: Implications for a prehistoric extreme wave event in the South China Sea region. Geoscience Letters, 4(1), 1–13. https://doi.org/10.1186/s40562-017-0078-3
Rimando, J. M., & Schoenbohm, L. M. (2020). Regional relative tectonic activity of structures in the Pampean flat slab segment of Argentina from 30 to 32°S. Geomorphology, 350, 106908. https://doi.org/10.1016/j.geomorph.2019.106908
Rimando, J., Williamson, A., Mendoza, R. B., & Hobbs, T. (2022). Source Model and Characteristics of the 27 July 2022 MW 7.0 Northwestern Luzon Earthquake. Seismica, 1(1), 1–8. https://doi.org/10.26443/seismica.v1i1.217
Rimando, R. E., & Knuepfer, P. L. K. (2006). Neotectonics of the Marikina Valley fault system (MVFS) and tectonic framework of structures in northern and central Luzon, Philippines. Tectonophysics, 415(1–4), 17–38. https://doi.org/10.1016/j.tecto.2005.11.009
Rimando, R. E., & Rimando, J. M. (2020). Morphotectonic kinematic indicators along the Vigan-Aggao Fault: The western deformation front of the Philippine Fault Zone in Northern Luzon, the Philippines. Geosciences, 10(2), 1–46. https://doi.org/10.3390/geosciences10020083
Rimando, R. E., Rimando, J. M., & Lim, R. B. (2020). Complex shear partitioning involving the 6 February 2012 Mw 6.7 Negros earthquake ground rupture in central Philippines. Geosciences, 10(11), 1–20. https://doi.org/10.3390/geosciences10110460
Ringenbach, J. C., Pinet, N., Stephan, J. F. F., & Delteil, J. (1993). Structural variety and tectonic evolution of strike slip basins related to by the Philippine Fault system , Northern Luzon, Philippines. Tectonics, 12(1), 187–203. https://doi.org/10.1029/92TC01968
Ringenbach, J. C., Stephan, J. F., Maleterre, P., & Bellon, H. (1990). Structure and geological history of the Lepanto-Cervantes releasing bend on the Abra river fault, Luzon Central Cordillera, Philippines. Tectonophysics, 183(1–4), 225–241. https://doi.org/10.1016/0040-1951(90)90418-8
Rockwell, T. K., Keller, E. A., & Jonson, D. L. (1985). Tectonic Geomorphology of Alluvial Fans and Mountain Fronts near Ventura, California. Proceedings of the 15th Annual Geomorphology Symposium in: Tectonic Geomorphology, 183–207.
Saaty, T. L. (1980). The Analytical Hierarchy Process. McGraw-Hill.
Saber, R., Caglayan, A., & Isik, V. (2018). Relative tectonic activity assessment and kinematic analysis of the North Bozgush fault Zone, NW Iran. Journal of Asian Earth Sciences, 164(November 2017), 219–236. https://doi.org/10.1016/j.jseaes.2018.06.023
Saber, R., Isik, V., & Caglayan, A. (2020). Tectonic geomorphology of the Aras drainage basin (NW Iran): Implications for the recent activity of the Aras fault zone. Geological Journal, 55(7), 5022–5048. https://doi.org/10.1002/gj.3724
Santiago, N. G., & Rillon, E. A. (1983). Assessment on the effects of the August 17, 1983 Earthquake in Laoag City.
Schumm, S. A. (1956). Evolution of drainage system and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646. https://doi.org/doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
Sedrette, S., Rebaï, N., & Mastere, M. (2016). Evaluation of neotectonic signature using morphometric indicators: Case study in Nefza, north-west of Tunisia. Journal of Geographic Information System, 8(3), 338–350. https://doi.org/10.4236/jgis.2016.83029
Selby, M. J. (1980). A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift Fur Geomorphologie, 24(1), 31–51. https://doi.org/10.1127/zfg/24/1984/31
Sharma, A., Singh, P., & Rai, P. K. (2018). Morphotectonic analysis of Sheer Khadd River basin using geo-spatial tools. Spatial Information Research, 26(4), 405–414. https://doi.org/10.1007/s41324-018-0185-z
Sharma, G., Champati ray, P. K., & Mohanty, S. (2018). Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology, 301, 108–120. https://doi.org/10.1016/j.geomorph.2017.11.002
Shen, C. C., Siringan, F. P., Lin, K., Dai, C. F., & Gong, S. Y. (2010). Sea-level rise and coral-reef development of Northwestern Luzon since 9.9 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(3–4), 465–473. https://doi.org/10.1016/j.palaeo.2010.04.007
Sipahi, S., & Timor, M. (2010). The analytic hierarchy process and analytic network process: An overview of applications. Management Decision, 48(5), 775–808. https://doi.org/10.1108/00251741011043920
Smith, W. D. (1907). The asbestos and manganese deposits of Ilocos Norte, with notes on the geology of the region. Philippine Journal of Science, 2A(3), 145–178.
Strahler, A. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913
Tavana, M., Soltanifar, M., & Santos-Arteaga, F. J. (2023). Analytical hierarchy process: revolution and evolution. Annals of Operations Research, 326(2), 879–907. https://doi.org/10.1007/s10479-021-04432-2
Tropical Rainfall Measuring Mission (TRMM). (2011). TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7, Greenbelt, MD. https://doi.org/10.5067/TRMM/TMPA/MONTH/7
Tsutsumi, H., & Perez, J. S. (2013). Large-scale active fault map of the Philippine fault based on aerial photograph interpretation. Active Fault Research, 2013(39), 29–37. https://doi.org/10.11462/afr.2013.39_29
Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
Valenzuela, R. G., & Garcia, L. C. (1983). Laoag Earthquake of 17 August 1983 Summary Report.
Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response, timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661–17674. https://doi.org/10.1029/1999JB900120
Downloads
Additional Files
Published
How to Cite
Issue
Publication Type
License
Copyright (c) 2024 Ace Matthew F. Cantillep, Noelynna T. Ramos, Jeremy M. Rimando
This work is licensed under a Creative Commons Attribution 4.0 International License.