Persistently high bedload flux in ephemeral channels

Authors

  • Kyle Stark New Mexico Institute of Mining and Technology, Department of Earth and Environmental Science, Socorro, NM, USA; San Francisco Estuary Institute, Richmond, CA, USA
  • Daniel Cadol New Mexico Institute of Mining and Technology, Department of Earth and Environmental Science, Socorro, NM, USA
  • Kate Leary New Mexico Institute of Mining and Technology, Department of Earth and Environmental Science, Socorro, NM; New Mexico Bureau of Geology and Mineral Resources, Socorro, NM, USA
  • Jonathan B. Laronne Ben Gurion University of the Negev, Department of Earth and Environmental Sciences & Dead Sea Arava Science Center, Beer Sheva, Israel

DOI:

https://doi.org/10.59236/geomorphica.v1i1.38

Keywords:

ephemeral, bedload transport, review, sediment

Abstract

We present the most comprehensive dataset of bedload transport in ephemeral channels compiled to date. These nine ephemeral channels cover a range of dryland climates and channel types. First, we evaluate these channels and how they compare with each other. Next, we contrast this database with a previously compiled bedload dataset encompassing 92 perennial rivers. While previous studies have identified differences between measured bedload flux in perennial and ephemeral systems, we quantify those differences across a wide range of channel types and shear stress conditions. We find that the ephemeral dataset is statistically distinct, showing greater average transport across flow conditions in normalized shear vs. bedload flux space. Prior researchers have variously attributed these high transport rates to a combination of factors that commonly define ephemeral channels: lack of armoring, mixed sand and gravel, flashy hydrographs, erodible banks, and lack of vegetation. We tested the influence of armoring by comparing transport differences at different transport stages, finding that bed armor contributes to the observed differences, but is not the sole reason. In addition to these previously proposed mechanisms, we add that the abundance of very coarse sand and fine gravels in ephemeral channels provides easily-mobilized but difficult-to-suspend particles.

References

Adeel, Z., & World Resources Institute (Eds.). (2005). Ecosystems and human well-being: desertification synthesis: a report of the Millennium Ecosystem Assessment. World Resources Institute.

Alexandrov, Y., Cohen, H., Laronne, J. B., & Reid, I. (2009). Suspended sediment load, bed load, and dissolved load yields from a semiarid drainage basin: A 15‐year study. Water Resources Research, 45(8), 2008WR007314. https://doi.org/10.1029/2008WR007314

An, C., Parker, G., Hassan, M. A., & Fu, X. (2019). Can magic sand cause massive degradation of a gravel-bed river at the decadal scale? Shi‑ting River, China. Geomorphology, 327, 147–158. https://doi.org/10.1016/j.geomorph.2018.10.026

An, C., Parker, G., Venditti, J. G., Lamb, M. P., Hassan, M. A., Miwa, H., & Fu, X. (2024). Autogenic Formation of Bimodal Grain Size Distributions in Rivers and Its Contribution to Gravel‐Sand Transitions. Geophysical Research Letters, 51(17). https://doi.org/10.1029/2024GL109109

Ancey, C., & Recking, A. (2023). Scaling behavior of bedload transport: what if Bagnold was right? Earth-Science Reviews, 246, 104571. https://doi.org/10.1016/j.earscirev.2023.104571

Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics (Professional Paper No. 422–I; p. 137). US Geological Survey. 10.3133/pp422I

Billi, P. (2011). Flash flood sediment transport in a steep sand-bed ephemeral stream. International Journal of Sediment Research, 26(2), 193–209. https://doi.org/10.1016/S1001-6279(11)60086-3

Billi, P. (2016). Channel processes and sedimentology of a boulder-bed ephemeral stream in the western Afar margin. Zeitschrift Für Geomorphologie, 60(1), 35–52. https://doi.org/10.1127/zfg/2016/0223

Biron, P. M., Robson, C., Lapointe, M. F., & Gaskin, S. J. (2004). Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Processes and Landforms, 29(11), 1403–1415. https://doi.org/10.1002/esp.1111

Bull, W. B. (1997). Discontinuous ephemeral streams. Geomorphology, 19(3–4), 227–276. https://doi.org/10.1016/S0169-555X(97)00016-0

Bunte, K., Abt, S. R., Potyondy, J. P., & Ryan, S. E. (2004). Measurement of Coarse Gravel and Cobble Transport Using Portable Bedload Traps. Journal of Hydraulic Engineering, 130(9), 879–893. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(879)

Cantalice, J. R. B., Cunha Filho, M., Stosic, B. D., Piscoya, V. C., Guerra, S. M. S., & Singh, V. P. (2013). Relationship between bedload and suspended sediment in the sand-bed Exu River, in the semi-arid region of Brazil. Hydrological Sciences Journal, 58(8), 1789–1802. https://doi.org/10.1080/02626667.2013.839875

Chevan, A., & Sutherland, M. (1991). Hierarchical Partitioning. The American Statistician, 45(2), 90–96. https://doi.org/10.1080/00031305.1991.10475776

Cohen, H., & Laronne, J. B. (2005). High rates of sediment transport by flashfloods in the Southern Judean Desert, Israel. Hydrological Processes, 19(8), 1687–1702. https://doi.org/10.1002/hyp.5630

Cohen, H., Laronne, J. B., & Reid, I. (2010). Simplicity and complexity of bed load response during flash floods in a gravel bed ephemeral river: A 10 year field study. Water Resources Research, 46(11), 2010WR009160. https://doi.org/10.1029/2010WR009160

Dahan, O., Tatarsky, B., Enzel, Y., Kulls, C., Seely, M., & Benito, G. (2008). Dynamics of Flood Water Infiltration and Ground Water Recharge in Hyperarid Desert. Groundwater, 46(3), 450–461. https://doi.org/10.1111/j.1745-6584.2007.00414.x

Dick, G. S., Anderson, R. S., & Sampson, D. E. (1997). Controls on flash flood magnitude and hydrograph shape, Upper Blue Hills badlands, Utah. Geology, 25(1), 45.

Drake, T. G., Shreve, R. L., Dietrich, W. E., Whiting, P. J., & Leopold, L. B. (1988). Bedload transport of fine gravel observed by motion-picture photography. Journal of Fluid Mechanics, 192, 193–217. https://doi.org/10.1017/S0022112088001831

Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows. US Department of Agriculture.

Finnegan, N. J., Sklar, L. S., & Fuller, T. K. (2007). Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel. Journal of Geophysical Research: Earth Surface, 112(F3), 2006JF000569. https://doi.org/10.1029/2006JF000569

Folk, R. L., & Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Goodrich, David C., Lane, L. J., Shillito, R. M., Miller, S. N., Syed, K. H., & Woolhiser, D. A. (1997). Linearity of basin response as a function of scale in a semiarid watershed. Water Resources Research, 33(12), 2951–2965. https://doi.org/10.1029/97WR01422

Goodrich, D.C., Kepner, W. G., Levick, L. R., & Wigington, P. J. (2018). Southwestern Intermittent and Ephemeral Stream Connectivity. JAWRA Journal of the American Water Resources Association, 54(2), 400–422. https://doi.org/10.1111/1752-1688.12636

Graf, W. L. (1983). Flood‐related channel change in an arid‐region river. Earth Surface Processes and Landforms, 8(2), 125–139. https://doi.org/10.1002/esp.3290080204

Graf, W. L. (1988). Fluvial Processes in Dryland Rivers. In D. Barsch, I. Douglas, F. Joly, M. Marcus, & B. Messerli (Eds.), Springer Series in Physical Environment (Vol. 3). Springer Berlin Heidelberg.

Habersack, H. M., Nachtneb El, H. P., & Laronne, J. B. (2001). The continuous measurement of bedload discharge in a large alpine gravel bed river. Journal of Hydraulic Research, 39(2), 125–133. https://doi.org/10.1080/00221680109499813

Halfi, E., Deshpande, V., Johnson, J. P. L., Katoshevski, D., Reid, I., Storz-Peretz, Y., & Laronne, J. B. (2018). Characterization of bedload discharge in bores and very unsteady flows in an ephemeral channel. E3S Web of Conferences, 40, 02036. https://doi.org/10.1051/e3sconf/20184002036

Halfi, E., Paz, D., Stark, K., Yogev, U., Reid, I., Dorman, M., & Laronne, J. B. (2020). Novel mass‐aggregation‐based calibration of an acoustic method of monitoring bedload flux by infrequent desert flash floods. Earth Surface Processes and Landforms, 45(14), 3510–3524. https://doi.org/10.1002/esp.4988

Hassan, M. A. (1993). Bed Material and Bedload Movement in Two Ephemeral Streams. In M. Marzo & C. Puigdefábregas (Eds.), Alluvial Sedimentation (1st ed., pp. 37–49). Wiley. https://doi.org/10.1002/9781444303995.ch4

Hassan, Marwan A. (1990). Observations of desert flood bores. Earth Surface Processes and Landforms, 15(5), 481–485. https://doi.org/10.1002/esp.3290150512

Hassan, Marwan A. (1993). Bed Material and Bedload Movement in Two Ephemeral Streams. In Alluvial Sedimentation (pp. 37–49). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444303995.ch4

Hassan, Marwan A., Egozi, R., & Parker, G. (2006). Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers. Water Resources Research, 42(9), 2005WR004707. https://doi.org/10.1029/2005WR004707

Hassan, Marwan A., Schick, A. P., & Shaw, P. A. (1999). The transport of gravel in an ephemeral sandbed river. Earth Surface Processes and Landforms, 24(7), 623–640.

Hayes, S. K., Montgomery, D. R., & Newhall, C. G. (2002). Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo. Geomorphology, 45(3–4), 211–224. https://doi.org/10.1016/S0169-555X(01)00155-6

Helley, E. J., & Smith, W. (1971). Development and calibration of a pressure-difference bedload sampler (Open-File Report No. 73–108). Series: Open-File Report.

Hinton, D., Hotchkiss, R., & Ames, D. P. (2017). Comprehensive and Quality-Controlled Bedload Transport Database. Journal of Hydraulic Engineering, 143(2), 06016024. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001221

King, J. G., Emmett, W. W., Whiting, P. J., Kenworthy, R. P., & Barry, J. J. (2004). Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho (Techreport RMRS-GTR-131; p. RMRS-GTR-131). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-131

Langbein, W. B., & Schumm, S. A. (1958). Yield of sediment in relation to mean annual precipitation. Eos, Transactions American Geophysical Union, 39(6), 1076–1084. https://doi.org/10.1029/TR039i006p01076

Laronne, J.B., Outhet, D. N., Duckham, J. L., & McCabe, T. J. (1992). Determining event bedload volumes for evaluation of potential degradation sites due to gravel extraction. Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992)., 87–94.

Laronne, J.B., Reid, I., Yitshak, Y., & Frostick, L. E. (1992). Recording bedload discharge in a semiarid channel, Nahal Yatir, Israel. Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992)., 210, 79–86.

Laronne, J.B., & Wilhelm, R. (2002). Shifting stage-volume curves: predicting event sedimentation rate based on reservoir stratigraphy. In Applying Geomorphology to Environmental Management (pp. 33–54). Water Resource Publications.

Laronne, Jonathan B., Reid, I., Yitshak, Y., & Frostick, L. E. (1994). The non-layering of gravel streambeds under ephemeral flood regimes. Journal of Hydrology, 159(1–4), 353–363. https://doi.org/10.1016/0022-1694(94)90266-6

Laronne, Jonathan B., & Reid, L. (1993). Very high rates of bedload sediment transport by ephemeral desert rivers. Nature, 366(6451), 148–150. https://doi.org/10.1038/366148a0

Lenzi, M. A., Mao, L., & Comiti, F. (2006). Effective discharge for sediment transport in a mountain river: Computational approaches and geomorphic effectiveness. Journal of Hydrology, 326(1–4), 257–276. https://doi.org/10.1016/j.jhydrol.2005.10.031

Leopold, L. B., Emmett, W. W., & Myrick, R. M. (1966). Channel and hillslope processes in a semiarid area, New Mexico (USGS Numbered Series No. 352; pp. 193–249). US Geological Survey. 10.3133/pp352G

Leopold, L. B., & Miller, J. P. (1956). Hydraulic factors and their relation to the drainage net. Professional Paper (USGS Numbered Series No. 282; p. 37). US Geological Survey. 10.3133/pp282A

Liébault, F., Jantzi, H., Klotz, S., Laronne, J. B., & Recking, A. (2016). Bedload monitoring under conditions of ultra-high suspended sediment concentrations. Journal of Hydrology, 540, 947–958. https://doi.org/10.1016/j.jhydrol.2016.07.014

Liébault, Frédéric, Laronne, J. B., Klotz, S., & Bel, C. (2022). Seasonal bedload pulses in a small alpine catchment. Geomorphology, 398, 108055. https://doi.org/10.1016/j.geomorph.2021.108055

Lucía, A., Recking, A., Martín-Duque, J. F., Storz-Peretz, Y., & Laronne, J. B. (2013). Continuous monitoring of bedload discharge in a small, steep sandy channel. Journal of Hydrology, 497, 37–50. https://doi.org/10.1016/j.jhydrol.2013.05.034

Malmon, D. V., Reneau, S. L., & Dunne, T. (2004). Sediment sorting and transport by flash floods. Journal of Geophysical Research: Earth Surface, 109(F2), 2003JF000067. https://doi.org/10.1029/2003JF000067

Marra, F., & Morin, E. (2018). Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates. Atmospheric Research, 200, 126–138. https://doi.org/10.1016/j.atmosres.2017.09.020

Martı́n-Vide, J. P., Niñerola, D., Bateman, A., Navarro, A., & Velasco, E. (1999). Runoff and sediment transport in a torrential ephemeral stream of the Mediterranean coast. Journal of Hydrology, 225(3–4), 118–129. https://doi.org/10.1016/S0022-1694(99)00134-1

Meirovich, L., Laronne, J. B., & Reid, I. (1998). The variation of water-surface slope and its significance for bedload transport during floods in gravel-bed streams. Journal of Hydraulic Research, 36(2), 147–157. https://doi.org/10.1080/00221689809498630

Merritt, A., Lane, B., & Hawkins, C. (2021). Classification and Prediction of Natural Streamflow Regimes in Arid Regions of the USA. Water, 13(3), 380. https://doi.org/10.3390/w13030380

Merritt, D. M., & Wohl, E. E. (2003). Downstream hydraulic geometry and channel adjustment during a flood along an ephemeral, arid-region drainage. Geomorphology, 52(3–4), 165–180. https://doi.org/10.1016/S0169-555X(02)00241-6

Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., & Datry, T. (2021). Global prevalence of non-perennial rivers and streams. Nature, 594(7863), 391–397. https://doi.org/10.1038/s41586-021-03565-5

Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. 2nd Meeting of International Association for Hydraulic Research. Int. Assoc. for Hydraul. Res., Stockholm. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7

Miwa, H., & Parker, G. (2017). Effects of sand content on initial gravel motion in gravel‐bed rivers. Earth Surface Processes and Landforms, 42(9), 1355–1364. https://doi.org/10.1002/esp.4119

Mujere, N., Masocha, M., Makurira, H., & Mazvimavi, D. (2022). Dynamics and scales of transmission losses in dryland river systems: a meta-analysis. Australasian Journal of Water Resources, 26(2), 227–241. https://doi.org/10.1080/13241583.2021.1996680

Nearing, M. A., Nichols, M. H., Stone, J. J., Renard, K. G., & Simanton, J. R. (2007). Sediment yields from unit‐source semiarid watersheds at Walnut Gulch. Water Resources Research, 43(6), 2006WR005692. https://doi.org/10.1029/2006WR005692

Nichols, M. H. (2004). A radio frequency identification system for monitoring coarse sediment particle displacement. Applied Engineering in Agriculture, 20(6), 783–787. https://doi.org/10.13031/2013.17727

Nittrouer, J. A., Allison, M. A., & Campanella, R. (2008). Bedform transport rates for the lowermost Mississippi River. Journal of Geophysical Research: Earth Surface, 113(F3), 2007JF000795. https://doi.org/10.1029/2007JF000795

Nittrouer, J. A., Mohrig, D., & Allison, M. (2011). Punctuated sand transport in the lowermost Mississippi River. Journal of Geophysical Research, 116(F4), F04025. https://doi.org/10.1029/2011JF002026

Parker, G. (1978). Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. Journal of Fluid Mechanics, 89(1), 127–146. https://doi.org/10.1017/S0022112078002505

Parker, G., Klingeman, P. C., & McLean, D. G. (1982). Bedload and Size Distribution in Paved Gravel-Bed Streams. Journal of the Hydraulics Division, 108(4), 544–571. https://doi.org/10.1061/JYCEAJ.0005854

Perret, E., Camenen, B., Berni, C., El Kadi Abderrezzak, K., & Renard, B. (2023). Uncertainties in Models Predicting Critical Bed Shear Stress of Cohesionless Particles. Journal of Hydraulic Engineering, 149(4), 04023002. https://doi.org/10.1061/JHEND8.HYENG-13101

Poreh, M., Sagiv, A., & Seginer, I. (1970). Sediment Sampling Efficiency of Slots. Journal of the Hydraulics Division, 96(10), 2065–2078. https://doi.org/10.1061/JYCEAJ.0002729

Powell, D. Mark, Reid, I., & Laronne, J. B. (2001). Evolution of bed load grain size distribution with increasing flow strength and the effect of flow duration on the caliber of bed load sediment yield in ephemeral gravel bed rivers. Water Resources Research, 37(5), 1463–1474. https://doi.org/10.1029/2000WR900342

Powell, D.M., Reid, I., Laronne, J. B., & Frostick, L. (1996). Bed load as a component of sediment yield from a semiarid watershed of the northern Negev. Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, 236, 389–398.

Recking, A. (2010). A comparison between flume and field bed load transport data and consequences for surface‐based bed load transport prediction. Water Resources Research, 46(3), 2009WR008007. https://doi.org/10.1029/2009WR008007

Reid, I., & Frostick, L. E. (1987). Flow dynamics and suspended sediment properties in arid zone flash floods. Hydrological Processes, 1(3), 239–253. https://doi.org/10.1002/hyp.3360010303

Reid, I., Layman, J. T., & Frostick, L. E. (1980). The Continuous Measurement Of Bedload Discharge. Journal of Hydraulic Research, 18(3), 243–249. https://doi.org/10.1080/00221688009499550

Reid, Ian, & Laronne, J. B. (1995). Bed Load Sediment Transport in an Ephemeral Stream and a Comparison with Seasonal and Perennial Counterparts. Water Resources Research, 31(3), 773–781. https://doi.org/10.1029/94WR02233

Reid, Ian, Laronne, J. B., & Powell, D. M. (1995). The nahal yatir bedload database: Sediment dynamics in a gravel‐bed ephemeral stream. Earth Surface Processes and Landforms, 20(9), 845–857. https://doi.org/10.1002/esp.3290200910

Schick, A. P., & Lekach, J. (1993). An evaluation of two ten-year sediment budgets, Nahal Yael, Israel. Physical Geography, 14(3), 225–238. https://doi.org/10.1080/02723646.1993.10642477

Schumm, S. A., & Lichty, R. W. (1965). Time, space, and causality in geomorphology. American Journal of Science, 263(2), 110–119. https://doi.org/10.2475/ajs.263.2.110

Sharma, K. D., & Murthy, J. S. R. (1994). Estimating transmission losses in an arid region–a realistic approach. Journal of Arid Environments, 27(2), 107–112. https://doi.org/10.1006/jare.1994.1051

Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Soil Conservation Service (originally in German).

Singer, M. B., & Michaelides, K. (2014). How is topographic simplicity maintained in ephemeral dryland channels? Geology, 42(12), 1091–1094. https://doi.org/10.1130/G36267.1

Stark, K., Cadol, D., Varyu, D., & Laronne, J. B. (2021). Direct, continuous measurements of ultra-high sediment fluxes in a sandy gravel-bed ephemeral river. Geomorphology, 382, 107682. https://doi.org/10.1016/j.geomorph.2021.107682

Stark, K., Laronne, J., Cadol, D., Reid, I., Powell, M., Billi, P., Cohen, H., Vela, A. L., Liebault, F., & Zapico, I. (2022). bedload from ephemeral channels (Version V1) [Computer software]. Harvard Dataverse. https://doi.org/10.7910/DVN/TAYWWJ

Storz-Peretz, Y., & Laronne, J. B. (2013). Morphotextural characterization of dryland braided channels. Geological Society of America Bulletin, 125(9–10), 1599–1617. https://doi.org/10.1130/B30773.1

Thappeta, S. K., Johnson, J. P. L., Halfi, E., Peretz, Y. S., & Laronne, J. B. (2023). Bed Shear Stress in Experimental Flash Flood Bores over Dry Beds and over Flowing Water: A Comparison of Methods. Journal of Hydraulic Engineering, 149(4), 04023001. https://doi.org/10.1061/JHEND8.HYENG-13029

Tongway, D. J., Valentin, C., & Seghieri, J. (2001). Banded Vegetation Patterning in Arid and Semiarid Environments (Vol. 149). Springer New York. https://doi.org/10.1007/978-1-4613-0207-0

Tooth, S. (2000). Process, form and change in dryland rivers: a review of recent research. Earth-Science Reviews, 51(1–4), 67–107. https://doi.org/10.1016/S0012-8252(00)00014-3

Tooth, S., & Nanson, G. C. (2000). Equilibrium and nonequilibrium conditions in dryland rivers. Physical Geography. Physical Geography, 21(3), 183–211. https://doi.org/10.1080/02723646.2000.10642705

U.S. EPA. (2015). Connectivity of Streams and Wetlands To Downstream Waters: A Review and Synthesis of the Scientific Evidence ((Final Report). EPA/600/R-14/475F). US Environmental Protection Agency.

Van Rijn, L. C. (1984). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10), 1431–1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

Vericat, D., Church, M., & Batalla, R. J. (2006). Bed load bias: Comparison of measurements obtained using two (76 and 152 mm) Helley‐Smith samplers in a gravel bed river. Water Resources Research, 42(1), 2005WR004025. https://doi.org/10.1029/2005WR004025

Wilcock, P. R. (1988). Methods for estimating the critical shear stress of individual fractions in mixed‐size sediment. Water Resources Research, 24(7), 1127–1135. https://doi.org/10.1029/WR024i007p01127

Wilcock, P. R., & Crowe, J. C. (2003). Surface-based Transport Model for Mixed-Size Sediment. Journal of Hydraulic Engineering, 129(2), 120–128. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120)

Wilcock, P. R., Kenworthy, S. T., & Crowe, J. C. (2001). Experimental study of the transport of mixed sand and gravel. Water Resources Research, 37(12), 3349–3358. https://doi.org/10.1029/2001WR000683

Wilcock, P. R., & McArdell, B. W. (1993). Surface‐based fractional transport rates: Mobilization thresholds and partial transport of a sand‐gravel sediment. Water Resources Research, 29(4), 1297–1312. https://doi.org/10.1029/92WR02748

Winter, B. D. (1990). A brief review of dam removal efforts in Washington, Oregon, Idaho, and California (techreport NOAA technical memorandum NMFS F/NWR; 28; p. 28). National Oceanic. https://repository.library.noaa.gov/view/noaa/3132

Yager, E. M., Turowski, J. M., Rickenmann, D., & McArdell, B. W. (2012). Sediment supply, grain protrusion, and bedload transport in mountain streams. Geophysical Research Letters, 39(10), 2012GL051654. https://doi.org/10.1029/2012GL051654

Yager, Elowyn M., Venditti, J. G., Smith, H. J., & Schmeeckle, M. W. (2018). The trouble with shear stress. Geomorphology, 323, 41–50. https://doi.org/10.1016/j.geomorph.2018.09.008

Yuill, B., Nichols, M., & Yager, E. (2010). Coarse bed material patch evolution in low-order, ephemeral channels. CATENA, 81(2), 126–136. https://doi.org/10.1016/j.catena.2010.02.002

Zapico, I., Laronne, J. B., Lucía, A., & Martín-Duque, J. F. (2018). Morpho-textural implications to bedload flux and texture in the sand-gravel ephemeral Poveda Gully. Geomorphology, 322, 53–65. https://doi.org/10.1016/j.geomorph.2018.08.026

We quantified the bedload flux differences between perennial and ephemeral channels across a wide range of channel types and flow strength conditions.  The ephemeral dataset is statistically distinct, showing greater average transport in all flow conditions - even during flooding events.

Downloads

Published

2025-01-27

How to Cite

Stark, K., Cadol, D., Leary, K., & Laronne, J. B. (2025). Persistently high bedload flux in ephemeral channels. Geomorphica, 1(1). https://doi.org/10.59236/geomorphica.v1i1.38

Issue

Publication Type

Research Article

Funding data