The effect of mudbank morphometrics and coastal morphology on multi-decadal coastline changes in the Guianas
DOI:
https://doi.org/10.59236/geomorphica.v1i1.43Keywords:
Coastline planform morphology, Internal and external controlling factors, Mudbanks, Guianas, Optical Satellite ObservationsAbstract
Understanding the factors that drive coastline evolution is complex, yet essential for managing coastal environments. For Guyana, Suriname and French Guiana, coastline changes can shed light on the relative contributions of alongshore migrating subtidal mudbanks compared to human or climate induced changes. This study addresses the impact of mudbank morphometrics on the Guianas' coastline morphology from 1985 to 2023, using Landsat’s optical earth observation data. We found that during mudbank phases, the coastline advanced significantly, averaging 4 to 40 m/yr, while in their absence, retreat averaged 16 to 21 m/yr. Relative low migration rates of 1 - 1.2 km/yr combined with the characteristics of mudbanks, some extending up to 8km offshore, explained part (R2 = 0.2, P <0.05) of the coastline's progradation and retrogradation. This computed frequency of mudbank occurrence, linking the position and shape of a mudbank, thus proves to be a key factor controlling the number of years a coastal section is protected and accretion is facilitated. Understanding these dynamics is crucial for future coastal protection efforts and ecosystem restoration. Our findings also highlight where coastlines do not benefit from mudbank-induced accretion, possibly due to irreversible changes in the system, emphasizing the need for tailored coastal management strategies.
References
Abascal-Zorrilla, N., Huybrechts, N., Orseau, S., Vantrepotte, V., Anthony, E., & Gardel, A. (2024). Numerical Investigation of the Sediment Load Exchange between a Coastal Mud Bank and Its Neighbouring Estuary. Water, 16(20), 2885. https://doi.org/10.3390/w16202885
Albeke, S. E., Nibbelink, N. P., Mu, L., & Ellsworth, D. J. (2010). Measuring boundary convexity at multiple spatial scales using a linear “moving window” analysis: An application to coastal river otter habitat selection. Landscape Ecology, 25, 1575–1587. https://doi.org/10.1007/s10980-010-9528-4
Alcântara, E., Barbosa, C., Stech, J., Novo, E., & Shimabukuro, Y. (2009). Improving the spectral unmixing algorithm to map water turbidity distributions. Environmental Modelling & Software, 24, 1051–1061. https://doi.org/10.1016/j.envsoft.2009.02.013
Allison, M. A., & Lee, M. T. (2004). Sediment exchange between Amazon mudbanks and shore-fringing mangroves in French Guiana. Marine Geology, 208, 169–190. https://doi.org/10.1016/j.margeo.2004.04.026
Allison, M. A., Lee, M. T., Ogston, A. S., & Aller, R. C. (2000). Origin of Amazon mudbanks along the northeastern coast of South America. Marine Geology, 163, 241–256. https://doi.org/10.1016/S0025-3227(99)00120-6
Allison, M. A., Nittrouer, C. A., & Faria, L. E. C. (1995). Rates and mechanisms of shoreface progradation and retreat downdrift of the Amazon river mouth. Marine Geology, 125, 373–392. https://doi.org/10.1016/0025-3227(95)00020-Y
Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management. https://doi.org/10.4155/cmt.12.20
Anthony, E. J., Brunier, G., Gardel, A., Hiwat, M., Cooper, A., & Fitzgerald, D. (2019). Chenier morphodynamics on the Amazon-influenced coast of Suriname, South America: Implications for beach ecosystem services. Frontiers in Earth Science, 7, 1–20. https://doi.org/10.3389/feart.2019.00035
Anthony, E. J., Gardel, A., & Gratiot, N. (2014). Fluvial sediment supply, mud banks, cheniers and the morphodynamics of the coast of South America between the Amazon and Orinoco river mouths. In Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences. Special Publications of the Geological Society, London (Vol. 388, pp. 533–560). Geological Society of London. https://doi.org/10.1144/sp388.8
Anthony, E. J., Gardel, A., Gratiot, N., Proisy, C., Allison, M. A., Dolique, F., & Fromard, F. (2010). The Amazon-influenced muddy coast of South America: A review of mud-bank-shoreline interactions. Earth-Science Reviews, 103, 99–121. https://doi.org/10.1016/j.earscirev.2010.09.008
Anthony, E. J., Gardel, A., Proisy, C., Fromard, F., Gensac, E., Peron, C., Walcker, R., & Lesourd, S. (2013). The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapá-Guianas coast, South America: A three-point research agenda. Journal of South American Earth Sciences, 44, 18–24. https://doi.org/10.1016/j.jsames.2012.06.005
Ashton, A. D., & Murray, A. B. (2006). High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. Journal of Geophysical Research: Earth Surface, 111, 1–17. https://doi.org/10.1029/2005JF000423
Ashton, A., Murray, A. B., & Arnault, O. (2001). Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature, 414, 1–6. https://doi.org/10.1038/35104541
Augustinus, P. G. E. F. (1980). Actual development of the chenier coast of Suriname (South America). Sedimentary Geology, 26, 91–113. https://doi.org/10.1016/0037-0738(80)90007-X
Augustinus, P. G. E. F. (1989). Cheniers and chenier plains: A general introduction. Marine Geology, 90, 219–229. https://doi.org/10.1016/0025-3227(89)90126-6
Augustinus, P. G. E. F. (2004). The influence of the trade winds on the coastal development of the Guianas at various scale levels: a synthesis. Marine Geology, 208, 145–151. https://doi.org/10.1016/j.margeo.2004.04.007
Augustinus, P. G. E. F., Hazelhoff, L., & Kroon, A. (1989). The chenier coast of Suriname: Modern and geological development. Marine Geology, 90, 269–281. https://doi.org/10.1016/0025-3227(89)90129-1
Balke, T., Bouma, T. J., Horstman, E. M., Webb, E. L., Erftemeijer, P. L. A., & Herman, P. M. J. (2011). Windows of opportunity: Thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series, 440, 1–9. https://doi.org/10.3354/meps09364
Best, U. S. N., van der Wegen, M., Dijkstra, J., Reyns, J., van Prooijen, B. C., & Roelvink, D. (2022). Wave attenuation potential, sediment properties and mangrove growth dynamics data over Guyana’s intertidal mudflats: Assessing the potential of mangrove restoration works. Earth System Science Data Discussions, 14, 1–24. https://doi.org/10.5194/essd-14-2445-2022
Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: A review. Journal of Coastal Research, 21, 688–703. https://doi.org/10.2112/03-0071.1
Brunier, G., Anthony, E. J., Gratiot, N., & Gardel, A. (2019). Exceptional rates and mechanisms of muddy shoreline retreat following mangrove removal. Earth Surface Processes and Landforms, 44, 1559–1571. https://doi.org/10.1002/esp.4593
Castelle, B., Masselink, G., Scott, T., Stokes, C., Konstantinou, A., Marieu, V., & Bujan, S. (2021). Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology, 383, 107707. https://doi.org/10.1016/j.geomorph.2021.107707
Castelle, B., Ritz, A., Marieu, V., Lerma, A. N., & Vandenhove, M. (2022). Primary drivers of multidecadal spatial and temporal patterns of shoreline change derived from optical satellite imagery. Geomorphology, 413, 108360. https://doi.org/10.1016/j.geomorph.2022.108360
Cipolletti, M. P., Delrieux, C. A., Perillo, G. M. E., & Cintia Piccolo, M. (2012). Superresolution border segmentation and measurement in remote sensing images. Computers & Geosciences, 40, 87–96. https://doi.org/10.1016/j.cageo.2011.07.015
De Jong, S. M., Shen, Y., de Vries, J., Bijnaar, G., van Maanen, B., Augustinus, P. G. E. F., & Verweij, P. (2021). Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. International Journal of Applied Earth Observation and Geoinformation, 97, 102293. https://doi.org/10.1016/j.jag.2020.102293
De Vries, J., De Jong, S. M., & Verweij, P. A. (2022). Multi-decadal coastline dynamics in Suriname controlled by migrating subtidal mudbanks. Earth Surface Processes and Landforms, 1–18. https://doi.org/10.1002/esp.5390
De Vries, J., Van Maanen, B., Ruessink, G., Verweij, P. A., & De Jong, S. M. (2021). Unmixing water and mud: Characterizing diffuse boundaries of subtidal mud banks from individual satellite observations. International Journal of Applied Earth Observation and Geoinformation, 95, 102252. https://doi.org/10.1016/j.jag.2020.102252
Donchyts, G., Baart, F., Winsemius, H. C., Gorelick, N., Kwadijk, J., & Van de Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature Climate Change, 6, 810–813. https://doi.org/10.1038/nclimate3111
Fashae, O. A., Tijani, M. N., Adekoya, A. E., Tijani, S. A., Adagbasa, E. G., & Aladejana, J. A. (2022). Comparative Assessment of the Changing Pattern of Land cover along the Southwestern Coast of Nigeria using GIS and Remote Sensing techniques. Scientific African, 17, e01286. https://doi.org/10.1016/j.sciaf.2022.e01286
Froidefond, J. M., Lahet, F., Hu, C., Doxaran, D., Guiral, D., Prost, M.T., & Ternon, J.-F.F. (2004). Mudflats and mud suspension observed from satellite data in French Guiana. Marine Geology, 208, 153–168. https://doi.org/10.1016/j.margeo.2004.04.025
Froidefond, J. M., Pujos, M., & Andre, X. (1988). Migration of mud banks and changing coastline in French Guiana. Marine Geology, 84, 19–30. https://doi.org/10.1016/0025-3227(88)90122-3
Fromard, F., Vega, C., & Proisy, C. (2004). Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Marine Geology, 208, 265–280. https://doi.org/10.1016/j.margeo.2004.04.018
Gardel, A., Anthony, E. J., Santos, V. F., Huybrechts, N., Lesourd, S., Sottolichio, A., & Maury, T. (2022). A remote sensing based classification approach for river mouths of the Amazon influenced Guianas coast. Regional Environmental Change, 1–12. https://doi.org/10.1007/s10113-022-01913-3
Gardel, A., Gensac, E., Anthony, E. J., Lesourd, S., Loisel, H., & Marin, D. (2011). Wave-formed mud bars: their morphodynamics and role in opportunistic mangrove colonization. Journal of Coastal Research, 384–387.
Gardel, A., & Gratiot, N. (2005). A satellite image–based method for estimating rates of mud bank migration, French Guiana, South America. Journal of Coastal Research, 214, 720–728. https://doi.org/10.2112/03-0100.1
Gardel, A., Proisy, C., Lesourd, S., Philippe, S., Caillaud, J., Gontharet, S., Brutier, L., & Anthony, E. J. (2009). A better understanding of mud cracking processes gained from in situ measurements on an intertidal mudflat in French Guiana. Journal of Coastal Research, 424–428.
Geleynse, N., Voller, V. R., Paola, C., & Ganti, V. (2012). Characterization of river delta shorelines. Geophysical Research Letters, 39, 2–7. https://doi.org/10.1029/2012GL052845
Gensac, E., Martinez, J. M., Vantrepotte, V., & Anthony, E. J. (2016). Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon river: The role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation. Continental Shelf Research, 118, 49–62. https://doi.org/10.1016/j.csr.2016.02.009
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Gratiot, N., & Anthony, E. J. (2016). Role of flocculation and settling processes in development of the mangrove-colonized, Amazon-influenced mud-bank coast of South America. Marine Geology, 373, 1–10. https://doi.org/10.1016/j.margeo.2015.12.013
Gratiot, N., Anthony, E. J., Gardel, A., Gaucherel, C., Proisy, C., & Wells, J. T. (2008). Significant contribution of the 18.6 year tidal cycle to regional coastal changes - supplement. Nature Geoscience, 1, 1–8. https://doi.org/10.1038/ngeo127
Gratiot, N., Gardel, A., & Anthony, E. J. (2007). Trade-wind waves and mud dynamics on the French Guiana coast, South America: Input from ERA-40 wave data and field investigations. Marine Geology, 236, 15–26. https://doi.org/10.1016/j.margeo.2006.09.013
Grömping, U. (2006). Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17, 1–27. https://doi.org/10.18637/jss.v017.i01
Hulskamp, R., Luijendijk, A., van Maren, B., Moreno-Rodenas, A., Calkoen, F., Kras, E., & Aarninkhof, S. (2023). Global distribution and dynamics of muddy coasts. Nature Communications, 14(1), 8259. https://doi.org/10.1038/s41467-023-43819-6
Kirby, R. (2000). Practical implications of tidal flat shape. Continental Shelf Research, 20, 1061–1077. https://doi.org/10.1016/S0278-4343(00)00012-1
Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. Remote Sensing. https://doi.org/10.3390/rs3050878
Labat, D., Espinoza, J. C., Ronchail, J., Cochonneau, G., de Oliveira, E., Doudou, J. C., & Guyot, J. L. (2012). Fluctuations in the monthly discharge of Guyana Shield rivers, related to Pacific and Atlantic climate variability. Hydrological Sciences Journal, 57, 1081–1091. https://doi.org/10.1080/02626667.2012.695074
Lauzon, R., Murray, A. B., Cheng, S., Liu, J., Ells, K. D., & Lazarus, E. D. (2019). Correlation between shoreline change and planform curvature on wave-dominated, sandy coasts. Journal of Geophysical Research: Earth Surface, 124, 3090–3106. https://doi.org/10.1029/2019JF005043
Lazarus, E. D., & Murray, A. B. (2007). Process signatures in regional patterns of shoreline change on annual to decadal time scales. Geophysical Research Letters, 34, 1–5. https://doi.org/10.1029/2007GL031047
Lefebvre, J.-P. P., Dolique, F., & Gratiot, N. (2004). Geomorphic evolution of a coastal mudflat under oceanic influences: An example from the dynamic shoreline of French Guiana. Marine Geology, 208, 191–205. https://doi.org/10.1016/j.margeo.2004.04.008
Liu, H., & Jezek, K. C. (2004). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25, 937–958. https://doi.org/10.1080/0143116031000139890
Luijendijk, A. P., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The state of the world’s beaches. Scientific Reports, 8, 6641. https://doi.org/10.1038/s41598-018-24630-6
Masselink, G., & Lazarus, E. D. (2019). Defining coastal resilience. Water, 11, 1–21. https://doi.org/10.3390/w11122587
McLoughlin, S. M., Wiberg, P. L., Safak, I., & McGlathery, K. J. (2015). Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts, 38, 620–638. https://doi.org/10.1007/s12237-014-9841-2
Moffett, K. B., Nardin, W., Silvestri, S., Wang, C., & Temmerman, S. (2015). Multiple stable states and catastrophic shifts in coastal wetlands: Progress, challenges, and opportunities in validating theory using remote sensing and other methods. Remote Sensing, 7, 10184–10226. https://doi.org/10.3390/rs70810184
Murray, B., & Ashton, A. (2013). Self-organization of large-scale coastline shapes. Philosophical Transactions of the Royal Society A, 371.
Nijbroek, R. (2012). Mangroves, Mudbanks and Seawalls: Political Ecology of Adaptation to Sea Level Rise in Suriname. University of South Florida. Ph.D. Dissertation.
Nijbroek, R. (2014). Mangroves, mudbanks and seawalls: Whose environmental knowledge counts when adapting to sea level rise in Suriname? Journal of Political Ecology, 21, 533–550. https://doi.org/10.2458/v21i1.21150
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., & Magnan, A. K. (2019). Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009157964.006
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412
Péron, C., Chatelet, A., Gensac, E., & Gardel, A. (2013). Mud bank migration from remote sensing and bathymetric data: The example of the Kourou River Estuary, French Guiana, South America. Journal of Coastal Research, 65, 558–563. https://doi.org/10.2112/SI65-095.1
Phillips, J. D. (2018). Coastal wetlands, sea level, and the dimensions of geomorphic resilience. Geomorphology, 305, 173–184. https://doi.org/10.1016/j.geomorph.2017.03.022
Plaziat, J. C., & Augustinus, P. G. E. F. (2004). Evolution of progradation/erosion along the French Guiana mangrove coast: A comparison of mapped shorelines since the 18th century with Holocene data. Marine Geology, 208, 127–143. https://doi.org/10.1016/j.margeo.2004.04.006
Proisy, C., Gratiot, N., Anthony, E. J., Gardel, A., Fromard, F., & Heuret, P. (2009). Mud bank colonization by opportunistic mangroves: A case study from French Guiana using lidar data. Continental Shelf Research, 29, 632–641. https://doi.org/10.1016/j.csr.2008.09.017
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Robinson, D. (2014). broom: An R Package for Converting Statistical Analysis Objects Into Tidy Data Frames.
Sanderman, J., & others. (2018). A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13, 55002. https://doi.org/10.1088/1748-9326/aabe1c
Shaw, J. B., Wolinsky, M. A., Paola, C., & Voller, V. R. (2008). An image-based method for shoreline mapping on complex coasts. Geophysical Research Letters, 35, 1–5. https://doi.org/10.1029/2008GL033963
Strimas-Mackey, M. (2021). Package smoothr.
Toorman, E. A., Anthony, E. J., Augustinus, P. G. E. F., Gardel, A., Gratiot, N., Homenauth, O., Huybrechts, N., & Monbaliu, J. (2018). Interaction of mangroves, coastal hydrodynamics, and morphodynamics along the coastal fringes of the Guianas. Coastal Research Library, 25, 429–473.
Trebossen, H., Deffontaines, B., Classeau, N., Kouame, J., & Rudant, J.-P. (2005). Monitoring coastal evolution and associated littoral hazards of French Guiana shoreline with radar images. Comptes Rendus Geoscience, 337, 1140–1153. https://doi.org/10.1016/j.crte.2005.05.013
van Ledden, M., Vaughn, G., Lansen, J., Wiersma, F., & Amsterdam, M. (2009). Extreme wave event along the Guyana coastline in October 2005. Continental Shelf Research, 29, 352–361. https://doi.org/10.1016/j.csr.2008.03.010
Vos, K., Harley, M. D., Splinter, K. D., Walker, A., & Turner, I. L. (2020). Beach Slopes From Satellite-Derived Shorelines. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL088365
Vos, K., Harley, M. D., Turner, I. L., & Splinter, K. D. (2021). Large regional variability in coastal erosion caused by ENSO.
Walcker, R., Anthony, E. J., Cassou, C., Aller, R. C., Gardel, A., Proisy, C., Martinez, J. M., & Fromard, F. (2015). Fluctuations in the extent of mangroves driven by multi-decadal changes in North Atlantic waves. Journal of Biogeography, 42, 2209–2219. https://doi.org/10.1111/jbi.12580
Warrick, J. A., Vos, K., East, A. E., & Vitousek, S. (2022). Fire (plus) flood (equals) beach: coastal response to an exceptional river sediment discharge event. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-07209-0
Wells, J. T., & Coleman, J. M. (1981). Physical processes and fine-grained sediment dynamics, coast of Surinam, South America. SEPM Journal of Sedimentary Research, 51, 1053–1068. https://doi.org/10.1306/212F7E1E-2B24-11D7-8648000102C1865D
Winterwerp, J. C., de Graaff, R. F., Groeneweg, J., & Luijendijk, A. P. (2007). Modelling of wave damping at Guyana mud coast. Coastal Engineering, 54, 249–261. https://doi.org/10.1016/j.coastaleng.2006.08.012
Wright, L. D., & Nittrouer, C. A. (1995). Dispersal of river sediments in coastal seas: Six contrasting cases. Estuaries, 18, 494–508. https://doi.org/10.2307/1352367
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., Fosnight, E. A., Shaw, J., Masek, J. G., & Roy, D. P. (2016). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185, 271–283. https://doi.org/10.1016/j.rse.2015.11.032
Xie, D., Schwarz, C., Kleinhans, M. G., Zhou, Z., & van Maanen, B. (2022). Implications of coastal conditions and sea-level rise on mangrove vulnerability: A bio-morphodynamic modeling study. Journal of Geophysical Research: Earth Surface, 127, 1–28. https://doi.org/10.1029/2021JF006301
Xie, S. P., & Carton, J. A. (2004). Tropical Atlantic variability: Patterns, mechanisms, and impacts. In Earth Climate: The Ocean-Atmosphere Interaction. (Vol. 147, pp. 121–142). American Geophysical Union. Geophysical Monograph Series. https://doi.org/10.1029/147GM07
Zorrilla, N. A., Vantrepotte, V., Gensac, E., Huybrechts, N., & Gardel, A. (2018). The advantages of Landsat 8-OLI-derived suspended particulate matter maps for monitoring the subtidal extension of Amazonian coastal mud banks (French Guiana). Remote Sensing, 10, 1–17. https://doi.org/10.3390/rs10111733
Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. https://doi.org/10.1111/j.2041-210x.2009.00001.x

Downloads
Additional Files
Published
How to Cite
Issue
Publication Type
License
Copyright (c) 2025 Job de Vries, Barend van Maanen, Gerben Ruessink, Pita A. Verweij, Steven M. de Jong

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Grant numbers WOTRO no. W07.303.106.